Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38370780

RESUMEN

While the functions of tyrosine phosphatases in T cell biology have been extensively studied, our knowledge on the contribution of serine/threonine phosphatases in T cells remains poor. Protein phosphatase 2A (PP2A) is one of the most abundantly expressed serine/threonine phosphatases. It is important in thymocyte development and CD4+ T cell differentiation. Utilizing a genetic model in which its catalytic subunit alpha isoform (PP2A Cα) is deleted in T cells, we investigated its contribution to CD8+ T cell homeostasis and effector functions. Our results demonstrate that T cell intrinsic PP2A Cα is critically required for CD8+ T cell homeostasis in secondary lymphoid organs and intestinal mucosal site. Importantly, PP2A Cα deficient CD8+ T cells exhibit reduced proliferation and survival. CD8+ T cell anti-bacterial response is strictly dependent on PP2A Cα. Expression of Bcl2 transgene rescues CD8+ T cell homeostasis in spleens, but not in intestinal mucosal site, nor does it restore the defective anti-bacterial responses. Finally, proteomics and phosphoproteomics analyses reveal potential targets dependent on PP2A Cα, including mTORC1 and AKT. Thus, PP2A Cα is a key modulator of CD8+ T cell homeostasis and effector functions.

2.
Brain ; 147(2): 566-589, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37776513

RESUMEN

Cerebral malaria is the deadliest complication that can arise from Plasmodium infection. CD8 T-cell engagement of brain vasculature is a putative mechanism of neuropathology in cerebral malaria. To define contributions of brain endothelial cell major histocompatibility complex (MHC) class I antigen-presentation to CD8 T cells in establishing cerebral malaria pathology, we developed novel H-2Kb LoxP and H-2Db LoxP mice crossed with Cdh5-Cre mice to achieve targeted deletion of discrete class I molecules, specifically from brain endothelium. This strategy allowed us to avoid off-target effects on iron homeostasis and class I-like molecules, which are known to perturb Plasmodium infection. This is the first endothelial-specific ablation of individual class-I molecules enabling us to interrogate these molecular interactions. In these studies, we interrogated human and mouse transcriptomics data to compare antigen presentation capacity during cerebral malaria. Using the Plasmodium berghei ANKA model of experimental cerebral malaria (ECM), we observed that H-2Kb and H-2Db class I molecules regulate distinct patterns of disease onset, CD8 T-cell infiltration, targeted cell death and regional blood-brain barrier disruption. Strikingly, ablation of either molecule from brain endothelial cells resulted in reduced CD8 T-cell activation, attenuated T-cell interaction with brain vasculature, lessened targeted cell death, preserved blood-brain barrier integrity and prevention of ECM and the death of the animal. We were able to show that these events were brain-specific through the use of parabiosis and created the novel technique of dual small animal MRI to simultaneously scan conjoined parabionts during infection. These data demonstrate that interactions of CD8 T cells with discrete MHC class I molecules on brain endothelium differentially regulate development of ECM neuropathology. Therefore, targeting MHC class I interactions therapeutically may hold potential for treatment of cases of severe malaria.


Asunto(s)
Malaria Cerebral , Ratones , Humanos , Animales , Malaria Cerebral/patología , Malaria Cerebral/prevención & control , Células Endoteliales/patología , Encéfalo/patología , Barrera Hematoencefálica/patología , Linfocitos T CD8-positivos , Endotelio/patología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
3.
Cancer Immunol Res ; 11(9): 1222-1236, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37378662

RESUMEN

The receptor tyrosine kinase AXL is a member of the TYRO3, AXL, and proto-oncogene tyrosine-protein kinase MER family and plays pleiotropic roles in cancer progression. AXL is expressed in immunosuppressive cells, which contributes to decreased efficacy of immunotherapy. Therefore, we hypothesized that AXL inhibition could serve as a strategy to overcome resistance to chimeric antigen receptor T (CAR T)-cell therapy. To test this, we determined the impact of AXL inhibition on CD19-targeted CAR T (CART19)-cell functions. Our results demonstrate that T cells and CAR T cells express high levels of AXL. Specifically, higher levels of AXL on activated Th2 CAR T cells and M2-polarized macrophages were observed. AXL inhibition with small molecules or via genetic disruption in T cells demonstrated selective inhibition of Th2 CAR T cells, reduction of Th2 cytokines, reversal of CAR T-cell inhibition, and promotion of CAR T-cell effector functions. AXL inhibition is a novel strategy to enhance CAR T-cell functions through two independent, but complementary, mechanisms: targeting Th2 cells and reversing myeloid-induced CAR T-cell inhibition through selective targeting of M2-polarized macrophages.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Tirosina Quinasa del Receptor Axl , Proteínas Proto-Oncogénicas , Proteínas Tirosina Quinasas Receptoras/genética
4.
Brain Behav Immun ; 112: 51-76, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37236326

RESUMEN

The contribution of circulating verses tissue resident memory T cells (TRMs) to clinical neuropathology is an enduring question due to a lack of mechanistic insights. The prevailing view is TRMs are protective against pathogens in the brain. However, the extent to which antigen-specific TRMs induce neuropathology upon reactivation is understudied. Using the described phenotype of TRMs, we found that brains of naïve mice harbor populations of CD69+ CD103- T cells. Notably, numbers of CD69+ CD103- TRMs rapidly increase following neurological insults of various origins. This TRM expansion precedes infiltration of virus antigen-specific CD8 T cells and is due to proliferation of T cells within the brain. We next evaluated the capacity of antigen-specific TRMs in the brain to induce significant neuroinflammation post virus clearance, including infiltration of inflammatory myeloid cells, activation of T cells in the brain, microglial activation, and significant blood brain barrier disruption. These neuroinflammatory events were induced by TRMs, as depletion of peripheral T cells or blocking T cell trafficking using FTY720 did not change the neuroinflammatory course. Depletion of all CD8 T cells, however, completely abrogated the neuroinflammatory response. Reactivation of antigen-specific TRMs in the brain also induced profound lymphopenia within the blood compartment. We have therefore determined that antigen-specific TRMs can induce significant neuroinflammation, neuropathology, and peripheral immunosuppression. The use of cognate antigen to reactivate CD8 TRMs enables us to isolate the neuropathologic effects induced by this cell type independently of other branches of immunological memory, differentiating this work from studies employing whole pathogen re-challenge. This study also demonstrates the capacity for CD8 TRMs to contribute to pathology associated with neurodegenerative disorders and long-term complications associated with viral infections. Understanding functions of brain TRMs is crucial in investigating their role in neurodegenerative disorders including MS, CNS cancers, and long-term complications associated with viral infections including COVID-19.


Asunto(s)
COVID-19 , Virosis , Ratones , Animales , Células T de Memoria , Enfermedades Neuroinflamatorias , Linfocitos T CD8-positivos , Encéfalo , Memoria Inmunológica
5.
Cancer Immunol Res ; 11(6): 763-776, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-36921098

RESUMEN

Glioblastoma (GBM) is the most common malignant brain tumor in adults, responsible for approximately 225,000 deaths per year. Despite preclinical successes, most interventions have failed to extend patient survival by more than a few months. Treatment with anti-programmed cell death protein 1 (anti-PD-1) immune checkpoint blockade (ICB) monotherapy has been beneficial for malignant tumors such as melanoma and lung cancers but has yet to be effectively employed in GBM. This study aimed to determine whether supplementing anti-PD-1 ICB with engineered extended half-life IL2, a potent lymphoproliferative cytokine, could improve outcomes. This combination therapy, subsequently referred to as enhanced checkpoint blockade (ECB), delivered intraperitoneally, reliably cures approximately 50% of C57BL/6 mice bearing orthotopic GL261 gliomas and extends median survival of the treated cohort. In the CT2A model, characterized as being resistant to CBI, ECB caused a decrease in CT2A tumor volume in half of measured animals similar to what was observed in GL261-bearing mice, promoting a trending survival increase. ECB generates robust immunologic responses, features of which include secondary lymphoid organ enlargement and increased activation status of both CD4 and CD8 T cells. This immunity is durable, with long-term ECB survivors able to resist GL261 rechallenge. Through employment of depletion strategies, ECB's efficacy was shown to be independent of host MHC class I-restricted antigen presentation but reliant on CD4 T cells. These results demonstrate ECB is efficacious against the GL261 glioma model through an MHC class I-independent mechanism and supporting further investigation into IL2-supplemented ICB therapies for tumors of the central nervous system.


Asunto(s)
Glioblastoma , Glioma , Ratones , Animales , Interleucina-2/farmacología , Interleucina-2/uso terapéutico , Semivida , Ratones Endogámicos C57BL , Glioma/patología , Línea Celular Tumoral
6.
Front Immunol ; 13: 952262, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211345

RESUMEN

Liver-resident mesenchymal stem cells (L-MSCs) are superior inhibitors of alloreactive T cell responses compared to their counterparts from bone marrow (BM-MSCs) or adipose tissue (A-MSCs), suggesting a role in liver's overall tolerogenic microenvironment. Whether L-MSCs also impact NK cell functions differently than other MSCs is not known. We generated and characterized L-MSCs, A-MSCs and BM-MSCs from human tissues. The mass spectrometry analysis demonstrated that L-MSC secretome is uniquely different than that of A-MSC/BM-MSC, with enriched protein sets involved in IFNγ responses and signaling. When co-cultured with primary human NK cells, L-MSCs but not other MSCs, decreased surface expression of activating receptors NKp44 and NKG2D. L-MSCs also decreased IFNγ secretion by IL-2-stimulated NK cells more effectively than other MSCs. Cytolytic function of NK cells were reduced significantly when co-cultured with L-MSCs, whereas A-MSCs or BM-MSCs did not have a major impact. Mechanistic studies showed that the L-MSC-mediated reduction in NK cell cytotoxicity is not through changes in secretion of the cytotoxic proteins Perforin, Granzyme A or B, but through increased production of HLA-C1 found in L-MSC secretome that inhibits NK cells by stimulating their inhibitory receptor KIRDL2/3. L-MSCs are more potent inhibitors of NK cell functions than A-MSC or BM-MSC. Combined with their T cell inhibitory features, these results suggest L-MSCs contribute to the tolerogenic liver microenvironment and liver-induced systemic tolerance often observed after liver transplantation.


Asunto(s)
Células Madre Mesenquimatosas , Subfamilia K de Receptores Similares a Lectina de Células NK , Granzimas/metabolismo , Humanos , Interleucina-2/metabolismo , Células Asesinas Naturales/metabolismo , Hígado/metabolismo , Células Madre Mesenquimatosas/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Perforina/metabolismo , Secretoma
7.
Sci Adv ; 8(34): eabm8563, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36001674

RESUMEN

Most gene-based severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are nonreplicating vectors. They deliver the gene or messenger RNA to the cell to express the spike protein but do not replicate to amplify antigen production. This study tested the utility of replication in a vaccine by comparing replication-defective adenovirus (RD-Ad) and replicating single-cycle adenovirus (SC-Ad) vaccines that express the SARS-CoV-2 spike protein. SC-Ad produced 100 times more spike protein than RD-Ad and generated significantly higher antibodies against the spike protein than RD-Ad after single immunization of Ad-permissive hamsters. SC-Ad-generated antibodies climbed over 14 weeks after single immunization and persisted for more than 10 months. When the hamsters were challenged 10.5 months after single immunization, a single intranasal or intramuscular immunization with SC-Ad-Spike reduced SARS-CoV-2 viral loads and damage in the lungs and preserved body weight better than vaccination with RD-Ad-Spike. This demonstrates the utility of harnessing replication in vaccines to amplify protection against infectious diseases.

8.
Blood ; 139(26): 3708-3721, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35090171

RESUMEN

Pivotal clinical trials of B-cell maturation antigen-targeted chimeric antigen receptor T (CART)-cell therapy in patients with relapsed/refractory multiple myeloma (MM) resulted in remarkable initial responses, which led to a recent US Food and Drug Administration approval. Despite the success of this therapy, durable remissions continue to be low, and the predominant mechanism of resistance is loss of CART cells and inhibition by the tumor microenvironment (TME). MM is characterized by an immunosuppressive TME with an abundance of cancer-associated fibroblasts (CAFs). Using MM models, we studied the impact of CAFs on CART-cell efficacy and developed strategies to overcome CART-cell inhibition. We showed that CAFs inhibit CART-cell antitumor activity and promote MM progression. CAFs express molecules such as fibroblast activation protein and signaling lymphocyte activation molecule family-7, which are attractive immunotherapy targets. To overcome CAF-induced CART-cell inhibition, CART cells were generated targeting both MM cells and CAFs. This dual-targeting CART-cell strategy significantly improved the effector functions of CART cells. We show for the first time that dual targeting of both malignant plasma cells and the CAFs within the TME is a novel strategy to overcome resistance to CART-cell therapy in MM.


Asunto(s)
Fibroblastos Asociados al Cáncer , Mieloma Múltiple , Médula Ósea , Fibroblastos Asociados al Cáncer/patología , Tratamiento Basado en Trasplante de Células y Tejidos , Fibroblastos , Humanos , Inmunoterapia Adoptiva/métodos , Mieloma Múltiple/patología , Microambiente Tumoral
9.
Hum Gene Ther ; 33(5-6): 250-261, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34731019

RESUMEN

Oncolytic viruses (OVs) can have utility for direct killing of cancer cells, but may also serve to activate the immune system against cancer cells. While viruses alone can serve as immune stimulators, there is great interest in arming OVs with genes encoding immune stimulatory proteins to amplify their effects. In this work, we have tested the efficacy of conditionally-replicating adenoviruses (CRAds) with and without selected immunostimulatory payloads, murine CD40L (mCD40L) or 4-1BBL (m4-1BBL), in an immune competent mouse model of melanoma. When CRAd657-m4-1BBL and CRAd657-mCD40L were injected into B16-hCAR murine melanoma tumors, both single vectors delayed tumor growth and prolong survival compared to empty CRAd657. However, combined injection of both CRAd-m4-1BBL and CRAd-mCD40L mediated significantly better control of tumor growth. All of the payloads increased immune cell infiltration into tumors and notably reduced expression of PD-1 exhaustion marker on T cells. Tumor volumes were negatively associated with total infiltrating T cell population. We found that the payloads increased immune cell infiltration into tumors with some specificities: recruitment of CD8+ T cells was higher with m4-1BBL expression, while mCD40L expression induced more CD4+ T cell infiltration. Importantly, the combination of CRAd657-m4-1BBL and CRAd657-mCD40L induced the highest immune cells/T cell infiltration and the highest anti-TRP-2 tumor-associated antigen T cell responses than empty or single gene vector. This combination also caused depigmentation in areas adjacent to the tumor sites in more animals. These data indicate that driving two axes of the immune system with combined immune stimulatory payloads can lead to improved anticancer immune responses and better tumor control in an immune competent model of cancer.


Asunto(s)
Ligando 4-1BB/metabolismo , Melanoma Experimental , Virus Oncolíticos , Adenoviridae/metabolismo , Animales , Ligando de CD40/genética , Ligando de CD40/metabolismo , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Inmunoterapia , Melanoma Experimental/genética , Melanoma Experimental/terapia , Ratones , Virus Oncolíticos/genética
10.
Front Immunol ; 12: 726421, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34526998

RESUMEN

CD8 T cell infiltration of the central nervous system (CNS) is necessary for host protection but contributes to neuropathology. Antigen presenting cells (APCs) situated at CNS borders are thought to mediate T cell entry into the parenchyma during neuroinflammation. The identity of the CNS-resident APC that presents antigen via major histocompatibility complex (MHC) class I to CD8 T cells is unknown. Herein, we characterize MHC class I expression in the naïve and virally infected brain and identify microglia and macrophages (CNS-myeloid cells) as APCs that upregulate H-2Kb and H-2Db upon infection. Conditional ablation of H-2Kb and H-2Db from CNS-myeloid cells allowed us to determine that antigen presentation via H-2Db, but not H-2Kb, was required for CNS immune infiltration during Theiler's murine encephalomyelitis virus (TMEV) infection and drives brain atrophy as a consequence of infection. These results demonstrate that CNS-myeloid cells are key APCs mediating CD8 T cell brain infiltration.


Asunto(s)
Células Presentadoras de Antígenos/patología , Encefalopatías/virología , Encéfalo/patología , Antígenos H-2/inmunología , Theilovirus/inmunología , Animales , Presentación de Antígeno , Células Presentadoras de Antígenos/virología , Atrofia , Encéfalo/inmunología , Encéfalo/virología , Encefalopatías/inmunología , Linfocitos T CD8-positivos/inmunología , Femenino , Macrófagos/patología , Macrófagos/virología , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/patología , Microglía/virología
12.
Genes (Basel) ; 12(8)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34440379

RESUMEN

The development of CRISPR-associated proteins, such as Cas9, has led to increased accessibility and ease of use in genome editing. However, additional tools are needed to quantify and identify successful genome editing events in living animals. We developed a method to rapidly quantify and monitor gene editing activity non-invasively in living animals that also facilitates confocal microscopy and nucleotide level analyses. Here we report a new CRISPR "fingerprinting" approach to activating luciferase and fluorescent proteins in mice as a function of gene editing. This system is based on experience with our prior cre recombinase (cre)-detector system and is designed for Cas editors able to target loxP including gRNAs for SaCas9 and ErCas12a. These CRISPRs cut specifically within loxP, an approach that is a departure from previous gene editing in vivo activity detection techniques that targeted adjacent stop sequences. In this sensor paradigm, CRISPR activity was monitored non-invasively in living cre reporter mice (FVB.129S6(B6)-Gt(ROSA)26Sortm1(Luc)Kael/J and Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J, which will be referred to as LSL-luciferase and mT/mG throughout the paper) after intramuscular or intravenous hydrodynamic plasmid injections, demonstrating utility in two diverse organ systems. The same genome-editing event was examined at the cellular level in specific tissues by confocal microscopy to determine the identity and frequency of successfully genome-edited cells. Further, SaCas9 induced targeted editing at efficiencies that were comparable to cre, demonstrating high effective delivery and activity in a whole animal. This work establishes genome editing tools and models to track CRISPR editing in vivo non-invasively and to fingerprint the identity of targeted cells. This approach also enables similar utility for any of the thousands of previously generated loxP animal models.


Asunto(s)
Edición Génica , Integrasas/genética , Animales , Sistemas CRISPR-Cas , Proteínas Fluorescentes Verdes/genética , Luciferasas/genética , Ratones
13.
Cancer Immunol Res ; 9(9): 1035-1046, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244299

RESUMEN

Although chimeric antigen receptor T (CART)-cell therapy has been successful in treating certain hematologic malignancies, wider adoption of CART-cell therapy is limited because of minimal activity in solid tumors and development of life-threatening toxicities, including cytokine release syndrome (CRS). There is a lack of a robust, clinically relevant imaging platform to monitor in vivo expansion and trafficking to tumor sites. To address this, we utilized the sodium iodide symporter (NIS) as a platform to image and track CART cells. We engineered CD19-directed and B-cell maturation antigen (BCMA)-directed CART cells to express NIS (NIS+CART19 and NIS+BCMA-CART, respectively) and tested the sensitivity of 18F-TFB-PET to detect trafficking and expansion in systemic and localized tumor models and in a CART-cell toxicity model. NIS+CART19 and NIS+BCMA-CART cells were generated through dual transduction with two vectors and demonstrated exclusive 125I uptake in vitro. 18F-TFB-PET detected NIS+CART cells in vivo to a sensitivity level of 40,000 cells. 18F-TFB-PET confirmed NIS+BCMA-CART-cell trafficking to the tumor sites in localized and systemic tumor models. In a xenograft model for CART-cell toxicity, 18F-TFB-PET revealed significant systemic uptake, correlating with CART-cell in vivo expansion, cytokine production, and development of CRS-associated clinical symptoms. NIS provides a sensitive, clinically applicable platform for CART-cell imaging with PET scan. 18F-TFB-PET detected CART-cell trafficking to tumor sites and in vivo expansion, correlating with the development of clinical and laboratory markers of CRS. These studies demonstrate a noninvasive, clinically relevant method to assess CART-cell functions in vivo.


Asunto(s)
Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Simportadores/análisis , Animales , Antígenos CD19 , Modelos Animales de Enfermedad , Femenino , Humanos , Células K562 , Masculino , Neoplasias/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Evol Appl ; 14(4): 1159-1177, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33897827

RESUMEN

Pathways through which phenotypic variation among individuals arise can be complex. One assumption often made in relation to intraspecific diversity is that the stability or predictability of the environment will interact with expression of the underlying phenotypic variation. To address biological complexity below the species level, we investigated variability across years in morphology and annual growth increments between and within two sympatric lake charr Salvelinus namaycush ecotypes in Rush Lake, USA. A rapid phenotypic shift in body and head shape was found within a decade. The magnitude and direction of the observed phenotypic change were consistent in both ecotypes, which suggests similar pathways caused the variation over time. Over the same time period, annual growth increments declined for both lake charr ecotypes and corresponded with a consistent phenotypic shift of each ecotype. Despite ecotype-specific annual growth changes in response to winter conditions, the observed annual growth shift for both ecotypes was linked, to some degree, with variation in the environment. Particularly, a declining trend in regional cloud cover was associated with an increase of early-stage (ages 1-3) annual growth for lake charr of Rush Lake. Underlying mechanisms causing changes in growth rates and constrained morphological modulation are not fully understood. An improved knowledge of the biology hidden within the expression of phenotypic variation promises to clarify our understanding of temporal morphological diversity and instability.

15.
Ecol Evol ; 11(3): 1457-1475, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33598144

RESUMEN

In a polyphenic species, differences in resource use are expected among ecotypes, and homogeneity in resource use is expected within an ecotype. Yet, using a broad resource spectrum has been identified as a strategy for fishes living in unproductive northern environments, where food is patchily distributed and ephemeral. We investigated whether specialization of trophic resources by individuals occurred within the generalist piscivore ecotype of lake trout from Great Bear Lake, Canada, reflective of a form of diversity. Four distinct dietary patterns of resource use within this lake trout ecotype were detected from fatty acid composition, with some variation linked to spatial patterns within Great Bear Lake. Feeding habits of different groups within the ecotype were not associated with detectable morphological or genetic differentiation, suggesting that behavioral plasticity caused the trophic differences. A low level of genetic differentiation was detected between exceptionally large-sized individuals and other piscivore individuals. We demonstrated that individual trophic specialization can occur within an ecotype inhabiting a geologically young system (8,000-10,000 yr BP), a lake that sustains high levels of phenotypic diversity of lake trout overall. The characterization of niche use among individuals, as done in this study, is necessary to understand the role that individual variation can play at the beginning of differentiation processes.

16.
Sci Total Environ ; 767: 144175, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33434837

RESUMEN

Field application of animal manure is a source of volatile organic compounds (VOC) and hydrogen sulfide (H2S) emission that contribute to air pollution and odor nuisance in local surroundings. In this study the non-methane volatile organic compounds (NMVOC) and H2S emission and odor activity dynamics over time after field application of pig and cattle manure were investigated. Furthermore, three different application techniques, trailing hoses, trailing shoes, and trailing hoses applying manure 20 cm above canopy, was compared. With a flexible system combining dynamic chambers and Proton-Transfer-Reaction Time-of-Flight Mass Spectroscopy (PTR-TOF-MS), H2S and 22 different NMVOC were measured, identified, and quantified. From pig manure high amounts of H2S was measured right after application, resulting in high odor activity values (OAV). During the first 10 h 4-methylphenol accounted for most of the cumulative emissions and OAV. Carboxylic acids were emitted for a longer period, and accounted for most of the long-term emissions and OAV. Acetic acid alone accounted for 33-57% of the total cumulative emissions. Trailing shoes were found to reduce NMVOC emission under certain conditions. It is suggested to use updated ratios from this study to calculate NMVOC emissions relative to ammonia emissions. The average ratios of cumulated NMVOC emission divided by cumulated ammonia emission 90 h after application of pig manure is 1.15±0.55 and 0.72±0.26 for trailing hoses and trailing shoes respectively, whereas the equivalent numbers for cattle manure is 0.43±0.11 and 0.18±0.04.

17.
Mol Ther ; 29(4): 1529-1540, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33388419

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy has yielded unprecedented outcomes in some patients with hematological malignancies; however, inhibition by the tumor microenvironment has prevented the broader success of CART cell therapy. We used chronic lymphocytic leukemia (CLL) as a model to investigate the interactions between the tumor microenvironment and CART cells. CLL is characterized by an immunosuppressive microenvironment, an abundance of systemic extracellular vesicles (EVs), and a relatively lower durable response rate to CART cell therapy. In this study, we characterized plasma EVs from untreated CLL patients and identified their leukemic cell origin. CLL-derived EVs were able to induce a state of CART cell dysfunction characterized by phenotypical, functional, and transcriptional changes of exhaustion. We demonstrate that, specifically, PD-L1+ CLL-derived EVs induce CART cell exhaustion. In conclusion, we identify an important mechanism of CART cell exhaustion induced by EVs from CLL patients.


Asunto(s)
Antígeno B7-H1/sangre , Leucemia Linfocítica Crónica de Células B/terapia , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética , Antígeno B7-H1/genética , Línea Celular Tumoral , Vesículas Extracelulares/genética , Vesículas Extracelulares/inmunología , Femenino , Humanos , Inmunoterapia Adoptiva/métodos , Leucemia Linfocítica Crónica de Células B/sangre , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Receptores de Antígenos de Linfocitos T/sangre , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos/inmunología , Linfocitos T/inmunología , Microambiente Tumoral/efectos de los fármacos
18.
Brain ; 143(12): 3629-3652, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33253355

RESUMEN

Immunosuppression of unknown aetiology is a hallmark feature of glioblastoma and is characterized by decreased CD4 T-cell counts and downregulation of major histocompatibility complex class II expression on peripheral blood monocytes in patients. This immunosuppression is a critical barrier to the successful development of immunotherapies for glioblastoma. We recapitulated the immunosuppression observed in glioblastoma patients in the C57BL/6 mouse and investigated the aetiology of low CD4 T-cell counts. We determined that thymic involution was a hallmark feature of immunosuppression in three distinct models of brain cancer, including mice harbouring GL261 glioma, B16 melanoma, and in a spontaneous model of diffuse intrinsic pontine glioma. In addition to thymic involution, we determined that tumour growth in the brain induced significant splenic involution, reductions in peripheral T cells, reduced MHC II expression on blood leucocytes, and a modest increase in bone marrow resident CD4 T cells. Using parabiosis we report that thymic involution, declines in peripheral T-cell counts, and reduced major histocompatibility complex class II expression levels were mediated through circulating blood-derived factors. Conversely, T-cell sequestration in the bone marrow was not governed through circulating factors. Serum isolated from glioma-bearing mice potently inhibited proliferation and functions of T cells both in vitro and in vivo. Interestingly, the factor responsible for immunosuppression in serum is non-steroidal and of high molecular weight. Through further analysis of neurological disease models, we determined that the immunosuppression was not unique to cancer itself, but rather occurs in response to brain injury. Non-cancerous acute neurological insults also induced significant thymic involution and rendered serum immunosuppressive. Both thymic involution and serum-derived immunosuppression were reversible upon clearance of brain insults. These findings demonstrate that brain cancers cause multifaceted immunosuppression and pinpoint circulating factors as a target of intervention to restore immunity.


Asunto(s)
Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/metabolismo , Tolerancia Inmunológica , Mediadores de Inflamación/metabolismo , Animales , Células de la Médula Ósea/inmunología , Linfocitos T CD4-Positivos/inmunología , Proliferación Celular , Progresión de la Enfermedad , Femenino , Genes MHC Clase II/genética , Glioblastoma/inmunología , Glioblastoma/metabolismo , Glioblastoma/patología , Glioma/inmunología , Glioma/metabolismo , Glioma/patología , Masculino , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Parabiosis , Convulsiones/inducido químicamente , Bazo/inmunología , Bazo/patología , Theilovirus , Timo/patología
19.
J Immunol ; 205(5): 1228-1238, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32737149

RESUMEN

Theiler's murine encephalomyelitis virus (TMEV) infection of the CNS is cleared in C57BL/6 mice by a CD8 T cell response restricted by the MHC class I molecule H-2Db The identity and function of the APC(s) involved in the priming of this T cell response is (are) poorly defined. To address this gap in knowledge, we developed an H-2Db LoxP-transgenic mouse system using otherwise MHC class I-deficient C57BL/6 mice, thereby conditionally ablating MHC class I-restricted Ag presentation in targeted APC subpopulations. We observed that CD11c+ APCs are critical for early priming of CD8 T cells against the immunodominant TMEV peptide VP2121-130 Loss of H-2Db on CD11c+ APCs mitigates the CD8 T cell response, preventing early viral clearance and immunopathology associated with CD8 T cell activity in the CNS. In contrast, animals with H-2Db-deficient LysM+ APCs retained early priming of Db:VP2121-130 epitope-specific CD8 T cells, although a modest reduction in immune cell entry into the CNS was observed. This work establishes a model enabling the critical dissection of H-2Db-restricted Ag presentation to CD8 T cells, revealing cell-specific and temporal features involved in the generation of CD8 T cell responses. Employing this novel system, we establish CD11c+ cells as pivotal to the establishment of acute antiviral CD8 T cell responses against the TMEV immunodominant epitope VP2121-130, with functional implications both for T cell-mediated viral control and immunopathology.


Asunto(s)
Antígenos Virales/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por Cardiovirus/inmunología , Genes MHC Clase I/inmunología , Antígenos H-2/inmunología , Theilovirus/inmunología , Animales , Presentación de Antígeno , Proteínas de la Cápside/inmunología , Epítopos de Linfocito T/inmunología , Epítopos Inmunodominantes/inmunología , Cinética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
20.
Environ Sci Technol ; 54(12): 7639-7650, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32407626

RESUMEN

Gaseous emissions from livestock production are complex mixtures including ammonia, methane, volatile organic compounds (VOC), and H2S. These contribute to eutrophication, reduced air quality, global warming, and odor nuisance. It is imperative that these gases are mitigated in an environmentally sustainable manner. We present the discovery of a microbial inhibitor combo consisting of tannic acid and sodium fluoride (TA-NaF), which exhibits clear synergistic inhibition of ammonia production in pure bacteria culture and in pig manure while simultaneously inhibiting methane and odorant (H2S and VOC) emissions. In laboratory headspace experiments on pig manure, we used proton-transfer-reaction mass spectrometry and cavity ring-down spectroscopy to measure the effect of TA-NaF on gaseous emissions. Ammonia emission was reduced by more than 95%, methane by up to ∼99%, and odor activity value by more than 50%. Microbial community analysis and gas emission data suggest that TA-NaF acts as an efficient generic microbial inhibitor, and we hypothesize that the synergistic inhibitory effect on ammonia production is related to tannic acid causing cell membrane leakage allowing fluoride ions easy access to urease.


Asunto(s)
Amoníaco , Metano , Amoníaco/análisis , Animales , Fluoruros , Ganado , Estiércol , Odorantes , Porcinos , Taninos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...