Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomicrofluidics ; 18(1): 014107, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38434239

RESUMEN

Discovery of new strains of bacteria that inhibit pathogen growth can facilitate improvements in biocontrol and probiotic strategies. Traditional, plate-based co-culture approaches that probe microbial interactions can impede this discovery as these methods are inherently low-throughput, labor-intensive, and qualitative. We report a second-generation, photo-addressable microwell device, developed to iteratively screen interactions between candidate biocontrol agents existing in bacterial strain libraries and pathogens under increasing pathogen pressure. Microwells (0.6 pl volume) provide unique co-culture sites between library strains and pathogens at controlled cellular ratios. During sequential screening iterations, library strains are challenged against increasing numbers of pathogens to quantitatively identify microwells containing strains inhibiting the highest numbers of pathogens. Ring-patterned 365 nm light is then used to ablate a photodegradable hydrogel membrane and sequentially release inhibitory strains from the device for recovery. Pathogen inhibition with each recovered strain is validated, followed by whole genome sequencing. To demonstrate the rapid nature of this approach, the device was used to screen a 293-membered biovar 1 agrobacterial strain library for strains inhibitory to the plant pathogen Agrobacterium tumefaciens sp. 15955. One iterative screen revealed nine new inhibitory strains. For comparison, plate-based methods did not uncover any inhibitory strains from the library (n = 30 plates). The novel pathogen-challenge screening mode developed here enables rapid selection and recovery of strains that effectively suppress pathogen growth from bacterial strain libraries, expanding this microwell technology platform toward rapid, cost-effective, and scalable screening for probiotics, biocontrol agents, and inhibitory molecules that can protect against known or emerging pathogens.

2.
ACS Appl Bio Mater ; 5(1): 134-145, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35014824

RESUMEN

Multispecies biofilms are a common limitation in membrane bioreactors, causing membrane clogging, degradation, and failure. There is a poor understanding of biological fouling mechanisms in these systems due to the limited number of experimental techniques useful for probing microbial interactions at the membrane interface. Here, we develop a new experimental method, termed polymer surface dissection (PSD), to investigate multispecies assembly processes over membrane surfaces. The PSD method uses photodegradable polyethylene glycol hydrogels functionalized with bioaffinity ligands to bind and detach microscale, microbial aggregates from the membrane for microscopic observation. Subsequent exposure of the hydrogel to high resolution, patterned UV light allows for controlled release of any selected aggregate of desired size at high purity for DNA extraction. Follow-up 16S community analysis reveals aggregate composition, correlating microscopic images with the bacterial community structure. The optimized approach can isolate aggregates with microscale spatial precision and yields genomic DNA at sufficient quantity and quality for sequencing from aggregates with areas as low as 2000 µm2, without the need of culturing for sample enrichment. To demonstrate the value of the approach, PSD was used to reveal the composition of microscale aggregates of different sizes during early-stage biofouling of aerobic wastewater communities over PVDF membranes. Larger aggregates exhibited lower diversity of bacterial communities, and a shift in the community structure was found as aggregate size increased to areas between 25,000 and 45,000 µm2, below which aggregates were more enriched in Bacteroidetes and above which aggregates were more enriched with Proteobacteria. The findings demonstrate that community succession can be observed within microscale aggregates and that the PSD method is useful for identification and characterization of early colonizing bacteria that drive biofouling on membrane surfaces.


Asunto(s)
Incrustaciones Biológicas , Bacterias/genética , Membranas Artificiales , Polímeros , Aguas del Alcantarillado/microbiología
3.
J Vis Exp ; (177)2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34806702

RESUMEN

Biologists have long attempted to understand the relationship between phenotype and genotype. To better understand this connection, it is crucial to develop practical technologies that couple microscopic cell screening with cell isolation at high purity for downstream genetic analysis. Here, the use of photodegradable poly(ethylene glycol) hydrogels for screening and isolation of bacteria with unique growth phenotypes from heterogeneous cell populations is described. The method relies on encapsulating or entrapping cells with the hydrogel, followed by culture, microscopic screening, then use of a high-resolution light patterning tool for spatiotemporal control of hydrogel degradation and release of selected cells into a solution for retrieval. Applying different light patterns allows for control over the morphology of the extracted cell, and patterns such as rings or crosses can be used to retrieve cells with minimal direct UV light exposure to mitigate DNA damage to the isolates. Moreover, the light patterning tool delivers an adjustable light dose to achieve various degradation and cell release rates. It allows for degradation at high resolution, enabling cell retrieval with micron-scale spatial precision. Here, the use of this material to screen and retrieve bacteria from both bulk hydrogels and microfabricated lab-on-a-chip devices is demonstrated. The method is inexpensive, simple, and can be used for common and emerging applications in microbiology, including isolation of bacterial strains with rare growth profiles from mutant libraries and isolation of bacterial consortia with emergent phenotypes for genomic characterizations.


Asunto(s)
Hidrogeles , Polietilenglicoles , Bacterias/genética , Materiales Biocompatibles , Separación Celular/métodos
4.
Biomacromolecules ; 21(8): 3140-3151, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32559368

RESUMEN

Screening mutant libraries (MLs) of bacteria for strains with specific phenotypes is often a slow and laborious process that requires assessment of tens of thousands of individual cell colonies after plating and culturing on solid media. In this report, we develop a three-dimensional, photodegradable hydrogel interface designed to dramatically improve the throughput of ML screening by combining high-density cell culture with precision extraction and the recovery of individual, microscale colonies for follow-up genetic and phenotypic characterization. ML populations are first added to a hydrogel precursor solution consisting of polyethylene glycol (PEG) o-nitrobenzyl diacrylate and PEG-tetrathiol macromers, where they become encapsulated into 13 µm thick hydrogel layers at a density of 90 cells/mm2, enabling parallel monitoring of 2.8 × 104 mutants per hydrogel. Encapsulated cells remain confined within the elastic matrix during culture, allowing one to track individual cells that grow into small, stable microcolonies (45 ± 4 µm in diameter) over the course of 72 h. Colonies with rare growth profiles can then be identified, extracted, and recovered from the hydrogel in a sequential manner and with minimal damage using a high-resolution, 365 nm patterned light source. The light pattern can be varied to release motile cells, cellular aggregates, or microcolonies encapsulated in protective PEG coatings. To access the benefits of this approach for ML screening, an Agrobacterium tumefaciens C58 transposon ML was screened for rare, resistant mutants able to grow in the presence of cell free culture media from Rhizobium rhizogenes K84, a well-known inhibitor of C58 cell growth. Subsequent genomic analysis of rare cells (9/28,000) that developed into microcolonies identified that seven of the resistant strains had mutations in the acc locus of the Ti plasmid. These observations are consistent with past research demonstrating that the disruption of this locus confers resistance to agrocin 84, an inhibitory molecule produced by K84. The high-throughput nature of the screen allows the A. tumefaciens genome (approximately 5.6 Mbps) to be screened to saturation in a single experimental trial, compared to hundreds of platings required by conventional plating approaches. As a miniaturized version of the gold-standard plating assay, this materials-based approach offers a simple, inexpensive, and highly translational screening technique that does not require microfluidic devices or complex liquid handling steps. The approach is readily adaptable to other applications that require isolation and study of rare or phenotypically pure cell populations.


Asunto(s)
Hidrogeles , Polietilenglicoles , Agrobacterium , Bacterias , Fenotipo
5.
Front Microbiol ; 11: 601788, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33469450

RESUMEN

Understanding microbe-microbe interactions is critical to predict microbiome function and to construct communities for desired outcomes. Investigation of these interactions poses a significant challenge due to the lack of suitable experimental tools available. Here we present the microwell recovery array (MRA), a new technology platform that screens interactions across a microbiome to uncover higher-order strain combinations that inhibit or promote the function of a focal species. One experimental trial generates 104 microbial communities that contain the focal species and a distinct random sample of uncharacterized cells from plant rhizosphere. Cells are sequentially recovered from individual wells that display highest or lowest levels of focal species growth using a high-resolution photopolymer extraction system. Interacting species are then identified and putative interactions are validated. Using this approach, we screen the poplar rhizosphere for strains affecting the growth of Pantoea sp. YR343, a plant growth promoting bacteria isolated from Populus deltoides rhizosphere. In one screen, we montiored 3,600 microwells within the array to uncover multiple antagonistic Stenotrophomonas strains and a set of Enterobacter strains that promoted YR343 growth. The later demonstrates the unique ability of the platform to discover multi-membered consortia that generate emergent outcomes, thereby expanding the range of phenotypes that can be characterized from microbiomes. This knowledge will aid in the development of consortia for Populus production, while the platform offers a new approach for screening and discovery of microbial interactions, applicable to any microbiome.

6.
Biomacromolecules ; 20(7): 2852-2863, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31150217

RESUMEN

Lectin-functional interfaces are useful for isolation of bacteria from solution because they are low-cost and allow nondestructive, reversible capture. This study provides a systematic investigation of physical and chemical surface parameters that influence bacteria capture over lectin-functionalized polymer interfaces and then applies these findings to construct surfaces with significantly enhanced bacteria capture. The designer block copolymer poly(glycidyl methacrylate)- block-poly(vinyldimethyl azlactone) was used as a lectin attachment layer, and lectin coupling into the polymer film through azlactone-lectin coupling reactions was first characterized. Here, experimental parameters including polymer areal chain density, lectin molecular weight, and lectin coupling buffer were systematically varied to identify parameters driving highest azlactone conversions and corresponding lectin surface densities. To introduce physical nanostructures into the attachment layer, nanopillar arrays (NPAs) of varied heights (300 and 2100 nm) were then used to provide an underlying surface template for the functional polymer layer. Capture of Escherichia coli on lectin-polymer surfaces coated over both flat and NPA surfaces was then investigated. For flat polymer interfaces, bacteria were detected on the surface after incubation at a solution concentration of 103 cfu/mL, and a corresponding detection limit of 1.7 × 103 cfu/mL was quantified. This detection limit was 1 order of magnitude lower than control lectin surfaces functionalized with standard, carbodiimide coupling chemistry. NPA surfaces containing 300 nm tall pillars further improved the detection limit to 2.1 × 102 cfu/mL, but also reduced the viability of captured cells. Finally, to investigate the impact of cell surface parameters on capture, we used Agrobacterium tumefaciens cells genetically modified to allow manipulation of exopolysaccharide adhesin production levels. Statistical analysis of surface capture levels revealed that lectin surface density was the primary factor driving capture, as opposed to exopolysaccharide adhesin expression. These findings emphasize the critical importance of the synthetic interface and the development of surfaces that combine high lectin densities with tailored physical features to drive high levels of capture. These insights will aid in design of biofunctional interfaces with physicochemical surface properties favorable for capture and isolation of bacteria cells from solutions.


Asunto(s)
Escherichia coli/aislamiento & purificación , Lactonas/química , Lectinas/farmacología , Nanoestructuras/química , Polivinilos/química , Adsorción/efectos de los fármacos , Escherichia coli/química , Escherichia coli/efectos de los fármacos , Lectinas/química , Polímeros/química , Polímeros/farmacología , Soluciones/química , Propiedades de Superficie
7.
ACS Appl Bio Mater ; 2(1): 266-276, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35016349

RESUMEN

Microwell arrays are important tools for studying single cell behavior and cell-cell interactions, both in microbial and mammalian systems. However, retrieval of cells from microwell arrays with high spatial precision remains a major technical hurdle that prevents follow-up genetic and phenotypic characterization of cells within observed microwells. This work describes a new, material-based approach to grow and retrieve live bacterial cells from small (≥20 µm diameter) microwells in an array using the plant pathogen Agrobacterium tumefaciens as a model bacterium. Our approach uses a light-responsive, step-polymerized poly(ethylene glycol) hydrogel interface as a membrane that confines motile cells within microwells while allowing nutrient exchange and cell growth. The key design feature is the photodegradability of the membrane, as it enables individual wells of interest to be opened using patterned UV light for selective release and retrieval of cells. Extraction can occur in parallel from any number and combination of wells defined by the user. These advancements represent a new use for light-responsive hydrogels and the ability to retrieve cells from microwells with high spatial precision enables several applications that require the isolation and characterization of cells with rare phenotypes from heterogeneous populations.

8.
J Vis Exp ; (136)2018 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-30010667

RESUMEN

In this paper, fabrication methods that generate novel surfaces using the azlactone-based block co-polymer, poly (glycidyl methacrylate)-block-poly (vinyl dimethyl azlactone) (PGMA-b-PVDMA), are presented. Due to the high reactivity of azlactone groups towards amine, thiol, and hydroxyl groups, PGMA-b-PVDMA surfaces can be modified with secondary molecules to create chemically or biologically functionalized interfaces for a variety of applications. Previous reports of patterned PGMA-b-PVDMA interfaces have used traditional top-down patterning techniques that generate non-uniform films and poorly controlled background chemistries. Here, we describe customized patterning techniques that enable precise deposition of highly uniform PGMA-b-PVDMA films in backgrounds that are chemically inert or that have biomolecule-repellent properties. Importantly, these methods are designed to deposit PGMA-b-PVDMA films in a manner that completely preserves azlactone functionality through each processing step. Patterned films show well-controlled thicknesses that correspond to polymer brushes (~90 nm) or to highly crosslinked structures (~1-10 µm). Brush patterns are generated using either the parylene lift-off or interface directed assembly methods described and are useful for precise modulation of overall chemical surface reactivity by adjusting either the PGMA-b-PVDMA pattern density or the length of the VDMA block. In contrast, the thick, crosslinked PGMA-b-PVDMA patterns are obtained using a customized micro-contact printing technique and offer the benefit of higher loading or capture of secondary material due to higher surface area to volume ratios. Detailed experimental steps, critical film characterizations, and trouble-shooting guides for each fabrication method are discussed.


Asunto(s)
Polímeros/química , Propiedades de Superficie
9.
Int J Food Microbiol ; 286: 6-14, 2018 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-30031226

RESUMEN

The aim of this study was to develop a nanoparticle-based cell capture system combined with a lateral flow test strip (LFT) assay for rapid detection of Campylobacter jejuni from poultry samples. The developed assay was bench-marked against the standard modified Charcoal Cefoperazone Deoxycholate Agar (mCCDA) method according to ISO16140:2003 procedures. The synthesized ferromagnetic nanoparticles (FMNs) were modified with glutaraldehyde, then functionalized with polyclonal antibodies for specific C. jejuni capture and concentration from poultry samples. After lysing captured cells, DNA from C. jejuni was amplified by PCR using the primers designed to target the hipO gene, and the PCR amplicons were detected with the lateral flow test strip assay. Following the ISO16140:2003 guidelines, the relative detection limit, and the inclusivity and exclusivity tests were determined. The results showed that the limit of detection (LOD) of the assay was 100 or 1 cfu/ml with C. jejuni in pure culture and 101-102 cfu/ml with target cells spiked in poultry sample. In addition, the inclusivity and exclusivity tests were found to be 100%. Using field chicken samples (n = 60), the assay showed relative accuracy, relative specificity, and relative sensitivity of 96.67%, 100% and 93.33%, respectively. The positive predictive values (PPV) and negative predictive values (NPV), and the kappa index of concordance (k) were calculated as 100% and 93.75%, and 0.93, respectively. The developed assay required approximately 3 h to complete and gave results comparable to those analyzed by the standard culture method, which required 5-7 days. The assay is rapid, easy-to-use, and has potential to be directly applied to C. jejuni detection in various categories of poultry samples.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Campylobacter coli/aislamiento & purificación , Campylobacter jejuni/aislamiento & purificación , Pollos/microbiología , Nanopartículas de Magnetita/química , Aves de Corral/microbiología , Animales , Infecciones por Campylobacter/diagnóstico , Campylobacter coli/genética , Campylobacter jejuni/genética , Campylobacter jejuni/inmunología , Cartilla de ADN/genética , Gastroenteritis/diagnóstico , Gastroenteritis/microbiología , Reacción en Cadena de la Polimerasa/métodos
11.
Sci Rep ; 6: 19131, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26796663

RESUMEN

In-plane frost growth on chilled hydrophobic surfaces is an inter-droplet phenomenon, where frozen droplets harvest water from neighboring supercooled liquid droplets to grow ice bridges that propagate across the surface in a chain reaction. To date, no surface has been able to passively prevent the in-plane growth of ice bridges across the population of supercooled condensate. Here, we demonstrate that when the separation between adjacent nucleation sites for supercooled condensate is properly controlled with chemical micropatterns prior to freezing, inter-droplet ice bridging can be slowed and even halted entirely. Since the edge-to-edge separation between adjacent supercooled droplets decreases with growth time, deliberately triggering an early freezing event to minimize the size of nascent condensation was also necessary. These findings reveal that inter-droplet frost growth can be passively suppressed by designing surfaces to spatially control nucleation sites and by temporally controlling the onset of freezing events.

12.
Biomicrofluidics ; 9(6): 064103, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26594264

RESUMEN

Microbial communities are complex heterogeneous systems that are influenced by physical and chemical interactions with their environment, host, and community members. Techniques that facilitate the quantitative evaluation of how microscale organization influences the morphogenesis of multispecies communities could provide valuable insights into the dynamic behavior and organization of natural communities, the design of synthetic environments for multispecies culture, and the engineering of artificial consortia. In this work, we demonstrate a method for patterning microbes into simple arrangements that allow the quantitative measurement of growth dynamics as a function of their proximity to one another. The method combines parylene-based liftoff techniques with microfluidic delivery to simultaneously pattern multiple bacterial species with high viability using low-cost, customizable methods. Quantitative measurements of bacterial growth for two competing isolates demonstrate that spatial coordination can play a critical role in multispecies growth and structure.

13.
Biosensors (Basel) ; 4(1): 63-75, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25587410

RESUMEN

The attachment and arrangement of microbes onto a substrate is influenced by both the biochemical and physical surface properties. In this report, we develop lectin-functionalized substrates containing patterned, three-dimensional polymeric structures of varied shapes and densities and use these to investigate the effects of topology and spatial confinement on lectin-mediated microbe immobilization. Films of poly(glycidyl methacrylate)-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA) were patterned on silicon surfaces into line arrays or square grid patterns with 5 µm wide features and varied pitch. The patterned films had three-dimensional geometries with 900 nm film thickness. After surface functionalization with wheat germ agglutinin, the size of Pseudomonas fluorescens aggregates immobilized was dependent on the pattern dimensions. Films patterned as parallel lines or square grids with a pitch of 10 µm or less led to the immobilization of individual microbes with minimal formation of aggregates. Both geometries allowed for incremental increases in aggregate size distribution with each increase in pitch. These engineered surfaces combine spatial confinement with affinity-based capture to control the extent of microbe adhesion and aggregation, and can also be used as a platform to investigate intercellular interactions and biofilm formation in microbial populations of controlled sizes.

14.
Biomacromolecules ; 14(10): 3742-8, 2013 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-24003861

RESUMEN

Microbial exopolysaccharides (EPS) play a critical and dynamic role in shaping the interactions between microbial community members and their local environment. The capture of targeted microbes using surface immobilized lectins that recognize specific extracellular oligosaccharide moieties offers a nondestructive method for functional characterization of EPS content. In this report, we evaluate the use of the block copolymer, poly(glycidyl methacrylate)-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA), as a surface scaffold for lectin-specific microbial capture. Three-dimensional polymer films were patterned on silicon substrates to provide discrete, covalent coupling sites for Triticum vulgare and Lens culinaris lectins. This material increased the number of Pseudomonas fluorescens microbes captured by up to 43% compared to control scaffolds that did not contain the copolymer. These results demonstrate that PGMA-b-PVDMA scaffolds provide a platform for improved microbe capture and screening of EPS content by combining high avidity lectin surfaces with three-dimensional surface topography.


Asunto(s)
Lens (Planta)/química , Lectinas de Plantas/química , Lectinas de Plantas/metabolismo , Ácidos Polimetacrílicos/metabolismo , Polivinilos/metabolismo , Pseudomonas fluorescens/aislamiento & purificación , Triticum/química , Estructura Molecular , Tamaño de la Partícula , Ácidos Polimetacrílicos/química , Polivinilos/química , Propiedades de Superficie
15.
PLoS One ; 8(1): e54680, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23355889

RESUMEN

Microfluidic flow assays (MFA) that measure shear dependent platelet function have potential clinical applications in the diagnosis and treatment of bleeding and thrombotic disorders. As a step towards clinical application, the objective of this study was to measure how phenotypic and genetic factors, as well as experimental conditions, affect the variability of platelet accumulation on type 1 collagen within a MFA. Whole blood was perfused over type 1 fibrillar collagen at wall shear rates of 150, 300, 750 and 1500 s⁻¹ through four independent channels with a height of 50 µm and a width of 500 µm. The accumulation of platelets was characterized by the lag time to 1% platelet surface coverage (Lag(T)), the rate of platelet accumulation (V(PLT)), and platelet surface coverage (SC). A cohort of normal donors was tested and the results were correlated to plasma von Willebrand factor (VWF) levels, platelet count, hematocrit, sex, and collagen receptors genotypes. VWF levels were the strongest determinant of platelet accumulation. VWF levels were positively correlated to V(PLT) and SC at all wall shear rates. A longer Lag(T) for platelet accumulation at arterial shear rates compared to venous shear rates was attributed to the time required for plasma proteins to adsorb to collagen. There was no association between platelet accumulation and hematocrit or platelet count. Individuals with the AG genotype of the GP6 gene had lower platelet accumulation than individuals with the AA genotype at 150 s⁻¹ and 300 s⁻¹. Recalcified blood collected into sodium citrate and corn trypsin inhibitor (CTI) resulted in diminished platelet accumulation compared to CTI alone, suggesting that citrate irreversibly diminishes platelet function. This study the largest association study of MFA in healthy donors (n = 104) and will likely set up the basis for the determination of the normal range of platelet responses in this type of assay.


Asunto(s)
Plaquetas/citología , Plaquetas/metabolismo , Colágeno Tipo I/química , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/normas , Adulto , Animales , Femenino , Caballos , Humanos , Masculino , Ratones , Variaciones Dependientes del Observador , Pruebas de Función Plaquetaria/métodos , Reproducibilidad de los Resultados
16.
Ann Biomed Eng ; 41(2): 250-62, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23001359

RESUMEN

The high blood volume requirements and low throughput of conventional flow assays for measuring platelet function are unsuitable for drug screening and clinical applications. In this study, we describe a microfluidic flow assay that uses 50 µL of whole blood to measure platelet function on ~300 micropatterned spots of collagen over a range of physiologic shear rates (50-920 s(-1)). Patterning of collagen thin films (CTF) was achieved using a novel hydrated microcontact stamping method. CTF spots of 20, 50, and 100 µm were defined on glass substrates and consisted of a dense mat of nanoscale collagen fibers (3.74 ± 0.75 nm). We found that a spot size of greater than 20 µm was necessary to support platelet adhesion under flow, suggesting a threshold injury size is necessary for stable platelet adhesion. Integrating 50 µm CTF microspots into a multishear microfluidic device yielded a high content assay from which we extracted platelet accumulation metrics (lag time, growth rate, total accumulation) on the spots using Hoffman modulation contrast microscopy. This method has potential broad application in identifying platelet function defects and screening, monitoring, and dosing antiplatelet agents.


Asunto(s)
Plaquetas/fisiología , Técnicas Analíticas Microfluídicas/métodos , Colágenos Fibrilares , Humanos , Adhesividad Plaquetaria , Agregación Plaquetaria
17.
Langmuir ; 27(22): 13648-58, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21967679

RESUMEN

Von Willebrand factor (VWF) binding and platelet adhesion to subendothelial collagens are initial events in thrombus formation at sites of vascular injury. These events are often studied in vitro using flow assays designed to mimic vascular hemodynamics. Flow assays commonly employ collagen-functionalized substrates, but a lack of standardized methods of surface ligation limits their widespread use as a clinical diagnostic. Here, we report the use of collagen thin films (CTF) in flow assays. Thin films were grown on hydrophobic substrates from type I collagen solutions of increasing concentration (10, 100, and 1000 µg/mL). We found that the corresponding increase in fiber surface area determined the amount of VWF binding and platelet adhesion. The association rate constant (k(a)) of plasma VWF binding at a wall shear stress of 45 dyn/cm(2) was 0.3 × 10(5), 1.8 × 10(5), and 1.6 × 10(5) M(-1) s(-1) for CTF grown from 10, 100, and 1000 µg/mL solutions, respectively. We observed a 5-fold increase in VWF binding capacity with each 10-fold increase in collagen solution concentration. The association rates of Ser1731Thr and His1786Asp VWF mutants with collagen binding deficiencies were 9% and 22%, respectively, of wild-type rates. Using microfluidic devices for blood flow assays, we observed that CTF supported platelet adhesion at a wall shear rate of 1000 s(-1). CTF grown from 10 and 100 µg/mL solutions had variable levels of platelet surface coverage between multiple normal donors. However, CTF substrates grown from 1000 µg/mL solutions had reproducible surface coverage levels (74 ± 17%) between normal donors, and there was significantly diminished surface coverage from two type 1 von Willebrand disease patients (8.0% and 24%). These results demonstrate that collagen thin films are homogeneous and reproducible substrates that can measure dysfunctions in VWF binding and platelet adhesion under flow in a clinical microfluidic assay format.


Asunto(s)
Plaquetas/citología , Adhesión Celular , Colágeno/metabolismo , Factor de von Willebrand/metabolismo , Adsorción , Animales , Humanos , Cinética , Microfluídica , Microscopía de Fuerza Atómica , Agregación Plaquetaria , Unión Proteica , Resonancia por Plasmón de Superficie
19.
Anal Biochem ; 386(2): 285-7, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19135969

RESUMEN

Polymerization-based signal amplification offers sensitive visualization of biotinylated biomolecules functionalized to glass microarrays in a manner suitable for point-of-care use. Here we report using this method for visual detection of multiplexed nucleic acid hybridizations from complex media and develop an application toward point mutation detection and single nucleotide polymorphism (SNP) typing. Primer extension reactions were employed to label selectively and universally all complementary surface DNA hybrids with photoinitiators, permitting simultaneous and dynamic photopolymerization from positive sites to 0.5-nM target concentrations. Dramatic improvements in signal ratios between complementary and mismatched hybrids enabled visual discrimination of single base differences in KRAS codon-12 biomarkers.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico/métodos , Hibridación de Ácido Nucleico/métodos , Polímeros/química , Codón , ADN/análisis , ADN/genética , Humanos , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Polimorfismo de Nucleótido Simple , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Sensibilidad y Especificidad , Proteína p53 Supresora de Tumor/genética , Proteínas ras/genética
20.
Anal Bioanal Chem ; 392(1-2): 167-75, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18661123

RESUMEN

Quantitative evaluation of minimal polynucleotide concentrations has become a critical analysis among a myriad of applications found in molecular diagnostic technology. Development of high-throughput, nonenzymatic assays that are sensitive, quantitative and yet feasible for point-of-care testing are thus beneficial for routine implementation. Here, we develop a nonenzymatic method for quantifying surface concentrations of labeled DNA targets by coupling regulated amounts of polymer growth to complementary biomolecular binding on array-based biochips. Polymer film thickness measurements in the 20-220 nm range vary logarithmically with labeled DNA surface concentrations over two orders of magnitude with a lower limit of quantitation at 60 molecules/microm(2) (approximately 10(6) target molecules). In an effort to develop this amplification method towards compatibility with fluorescence-based methods of characterization, incorporation of fluorescent nanoparticles into the polymer films is also evaluated. The resulting gains in fluorescent signal enable quantification using detection instrumentation amenable to point-of-care settings.


Asunto(s)
ADN/análisis , Eosina Amarillenta-(YS)/análogos & derivados , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Oligonucleótidos/análisis , Estreptavidina/química , Unión Competitiva , Biotina/química , ADN/química , Técnica de Dilución de Colorante/instrumentación , Eosina Amarillenta-(YS)/química , Colorantes Fluorescentes/química , Cinética , Microscopía Fluorescente , Nanopartículas/química , Oligonucleótidos/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...