Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Inorg Biochem ; 244: 112206, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37030124

RESUMEN

Precise metal-protein coordination by design remains a considerable challenge. Polydentate, high-metal-affinity protein modifications, both chemical and recombinant, can enable metal localization. However, these constructs are often bulky, conformationally and stereochemically ill-defined, or coordinately saturated. Here, we expand the biomolecular metal-coordination toolbox with the irreversible attachment to cysteine of bis(1-methylimidazol-2-yl)ethene ("BMIE"), which generates a compact imidazole-based metal-coordinating ligand. Conjugate additions of small-molecule thiols (thiocresol and N-Boc-Cys) with BMIE confirm general thiol reactivity. The BMIE adducts are shown to complex the divalent metal ions Cu++ and Zn++ in bidentate (N2) and tridentate (N2S*) coordination geometries. Cysteine-targeted BMIE modification (>90% yield at pH 8.0) of a model protein, the S203C variant of carboxypeptidase G2 (CPG2), measured with ESI-MS, confirms its utility as a site-selective bioconjugation method. ICP-MS analysis confirms mono-metallation of the BMIE-modified CPG2 protein with Zn++, Cu++, and Co++. EPR characterization of the BMIE-modified CPG2 protein reveals the structural details of the site selective 1:1 BMIE-Cu++ coordination and symmetric tetragonal geometry under physiological conditions and in the presence of various competing and exchangeable ligands (H2O/HO-, tris, and phenanthroline). An X-ray protein crystal structure of BMIE-modified CPG2-S203C demonstrates that the BMIE modification is minimally disruptive to the overall protein structure, including the carboxypeptidase active sites, although Zn++ metalation could not be conclusively discerned at the resolution obtained. The carboxypeptidase catalytic activity of BMIE-modified CPG2-S203C was also assayed and found to be minimally affected. These features, combined with ease of attachment, define the new BMIE-based ligation as a versatile metalloprotein design tool, and enable future catalytic and structural applications.


Asunto(s)
Metaloproteínas , Metaloproteínas/química , Cisteína , Zinc/química , Metales , Péptido Hidrolasas , Imidazoles , Compuestos de Sulfhidrilo/química , Cobre/química , Cristalografía por Rayos X , Ligandos
2.
ACS Chem Biol ; 17(7): 1924-1936, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35776893

RESUMEN

DNA polymerases have evolved to feature a highly conserved activity across the tree of life: formation of, without exception, internucleotidyl O-P linkages. Can this linkage selectivity be overcome by design to produce xenonucleic acids? Here, we report that the structure-guided redesign of an archaeal DNA polymerase, 9°N, exhibits a new activity undetectable in the wild-type enzyme: catalyzing the formation of internucleotidyl N-P linkages using 3'-NH2-ddNTPs. Replacing a metal-binding aspartate in the 9°N active site with asparagine was key to the emergence of this unnatural enzyme activity. MD simulations provided insights into how a single substitution enhances the productive positioning of a 3'-amino nucleophile in the active site. Further remodeling of the protein-nucleic acid interface in the finger subdomain yielded a quadruple-mutant variant (9°N-NRQS) displaying DNA-dependent NP-DNA polymerase activity. In addition, the engineered promiscuity of 9°N-NRQS was leveraged for one-pot synthesis of DNA─NP-DNA copolymers. This work sheds light on the molecular basis of substrate fidelity and latent promiscuity in enzymes.


Asunto(s)
ADN Polimerasa Dirigida por ADN , ADN , Dominio Catalítico , ADN/química , Replicación del ADN , ADN de Archaea , ADN Polimerasa Dirigida por ADN/metabolismo
3.
Nat Commun ; 12(1): 6947, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-34845212

RESUMEN

Each year vast international resources are wasted on irreproducible research. The scientific community has been slow to adopt standard software engineering practices, despite the increases in high-dimensional data, complexities of workflows, and computational environments. Here we show how scientific software applications can be created in a reproducible manner when simple design goals for reproducibility are met. We describe the implementation of a test server framework and 40 scientific benchmarks, covering numerous applications in Rosetta bio-macromolecular modeling. High performance computing cluster integration allows these benchmarks to run continuously and automatically. Detailed protocol captures are useful for developers and users of Rosetta and other macromolecular modeling tools. The framework and design concepts presented here are valuable for developers and users of any type of scientific software and for the scientific community to create reproducible methods. Specific examples highlight the utility of this framework, and the comprehensive documentation illustrates the ease of adding new tests in a matter of hours.


Asunto(s)
Sustancias Macromoleculares/química , Simulación del Acoplamiento Molecular , Proteínas/química , Programas Informáticos/normas , Benchmarking , Sitios de Unión , Humanos , Ligandos , Sustancias Macromoleculares/metabolismo , Unión Proteica , Proteínas/metabolismo , Reproducibilidad de los Resultados
4.
Curr Opin Struct Biol ; 63: 106-114, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32569994

RESUMEN

The design of protein-based assemblies is an emerging area in bionanotechnology with wide ranging applications, from vaccines to smart biomaterials. Design approaches have sought to mimic both the topologies of assemblies observed in nature, as well as their functionally relevant properties, such as being responsive to external cues. In the last few years, diverse design approaches have been used to construct assemblies with integer-dimensional (e.g. filaments, layers, lattices and polyhedra) and non-integer-dimensional (fractal) topologies. Supramolecular structures that assemble/disassemble in response to chemical and physical stimuli have also been built. Hybrid protein-DNA assemblies have expanded the set of building blocks used for generating supramolecular architectures. While still far from reproducing the sophistication of natural assemblies, these exciting results represent important steps towards the design of responsive and functional biomaterials built from the bottom up. As the complexity of topologies and diversity of building blocks increases, considerations of both thermodynamics and kinetics of assembly formation will play crucial roles in making the design of protein-based assemblies robust and useful.


Asunto(s)
Complejos Multiproteicos/química , Ingeniería de Proteínas , Proteínas/química , Animales , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Cinética , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas/métodos , Proteínas/genética , Relación Estructura-Actividad , Termodinámica
5.
Nat Chem ; 11(7): 605-614, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209296

RESUMEN

Fractal topologies, which are statistically self-similar over multiple length scales, are pervasive in nature. The recurrence of patterns in fractal-shaped branched objects, such as trees, lungs and sponges, results in a high surface area to volume ratio, which provides key functional advantages including molecular trapping and exchange. Mimicking these topologies in designed protein-based assemblies could provide access to functional biomaterials. Here we describe a computational design approach for the reversible self-assembly of proteins into tunable supramolecular fractal-like topologies in response to phosphorylation. Guided by atomic-resolution models, we develop fusions of Src homology 2 (SH2) domain or a phosphorylatable SH2-binding peptide, respectively, to two symmetric, homo-oligomeric proteins. Mixing the two designed components resulted in a variety of dendritic, hyperbranched and sponge-like topologies that are phosphorylation-dependent and self-similar over three decades (~10 nm-10 µm) of length scale, in agreement with models from multiscale computational simulations. Designed assemblies perform efficient phosphorylation-dependent capture and release of cargo proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fractales , Agregado de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Algoritmos , Proteínas Bacterianas/genética , Escherichia coli/química , Humanos , Modelos Químicos , Modelos Moleculares , Fosforilación , Ingeniería de Proteínas/métodos , Multimerización de Proteína , Proteínas Recombinantes de Fusión/genética , Dominios Homologos src/genética , Familia-src Quinasas/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(47): 12472-12477, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29109284

RESUMEN

Thermostabilization represents a critical and often obligatory step toward enhancing the robustness of enzymes for organic synthesis and other applications. While directed evolution methods have provided valuable tools for this purpose, these protocols are laborious and time-consuming and typically require the accumulation of several mutations, potentially at the expense of catalytic function. Here, we report a minimally invasive strategy for enzyme stabilization that relies on the installation of genetically encoded, nonreducible covalent staples in a target protein scaffold using computational design. This methodology enables the rapid development of myoglobin-based cyclopropanation biocatalysts featuring dramatically enhanced thermostability (ΔTm = +18.0 °C and ΔT50 = +16.0 °C) as well as increased stability against chemical denaturation [ΔCm (GndHCl) = 0.53 M], without altering their catalytic efficiency and stereoselectivity properties. In addition, the stabilized variants offer superior performance and selectivity compared with the parent enzyme in the presence of a high concentration of organic cosolvents, enabling the more efficient cyclopropanation of a water-insoluble substrate. This work introduces and validates an approach for protein stabilization which should be applicable to a variety of other proteins and enzymes.


Asunto(s)
Enzimas/química , Modelos Químicos , Ingeniería de Proteínas/métodos , Biocatálisis , Biología Computacional , Estabilidad de Enzimas , Cinética , Modelos Estructurales , Estructura Molecular , Solubilidad , Temperatura
7.
Proc Natl Acad Sci U S A ; 114(39): 10420-10425, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28893989

RESUMEN

Posttranslational modification of ribosomally synthesized peptides provides an elegant means for the production of biologically active molecules known as RiPPs (ribosomally synthesized and posttranslationally modified peptides). Although the leader sequence of the precursor peptide is often required for turnover, the exact mode of recognition by the modifying enzymes remains unclear for many members of this class of natural products. Here, we have used X-ray crystallography and computational modeling to examine the role of the leader peptide in the biosynthesis of a homolog of streptide, a recently identified peptide natural product with an intramolecular lysine-tryptophan cross-link, which is installed by the radical S-adenosylmethionine (SAM) enzyme, StrB. We present crystal structures of SuiB, a close ortholog of StrB, in various forms, including apo SuiB, SAM-bound SuiB, and a complex of SuiB with SAM and its peptide substrate, SuiA. Although the N-terminal domain of SuiB adopts a typical RRE (RiPP recognition element) motif, which has been implicated in precursor peptide recognition, we observe binding of the leader peptide in the catalytic barrel rather than the N-terminal domain. Computational simulations support a mechanism in which the leader peptide guides posttranslational modification by positioning the cross-linking residues of the precursor peptide within the active site. Together the results shed light onto binding of the precursor peptide and the associated conformational changes needed for the formation of the unique carbon-carbon cross-link in the streptide family of natural products.


Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol)/química , S-Adenosilmetionina/química , Streptococcus/metabolismo , Biología Computacional , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Biosíntesis de Proteínas/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Señales de Clasificación de Proteína/genética , Estructura Secundaria de Proteína , Streptococcus/enzimología
8.
J Am Chem Soc ; 139(36): 12559-12568, 2017 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-28759213

RESUMEN

The hedgehog (Hh) signaling pathway plays a central role during embryonic development, and its aberrant activation has been implicated in the development and progression of several human cancers. Major efforts toward the identification of chemical modulators of the hedgehog pathway have yielded several antagonists of the GPCR-like smoothened receptor. In contrast, potent inhibitors of the sonic hedgehog/patched interaction, the most upstream event in ligand-induced activation of this signaling pathway, have been elusive. To address this gap, a genetically encoded cyclic peptide was designed based on the sonic hedgehog (Shh)-binding loop of hedgehog-interacting protein (HHIP) and subjected to multiple rounds of affinity maturation through the screening of macrocyclic peptide libraries produced in E. coli cells. Using this approach, an optimized macrocyclic peptide inhibitor (HL2-m5) was obtained that binds Shh with a KD of 170 nM, which corresponds to a 120-fold affinity improvement compared to the parent molecule. Importantly, HL2-m5 is able to effectively suppress Shh-mediated hedgehog signaling and Gli-controlled gene transcription in living cells (IC50 = 230 nM), providing the most potent inhibitor of the sonic hedgehog/patched interaction reported to date. This first-in-class macrocyclic peptide modulator of the hedgehog pathway is expected to provide a valuable probe for investigating and targeting ligand-dependent hedgehog pathway activation in cancer and other pathologies. This work also introduces a general strategy for the development of cyclopeptide inhibitors of protein-protein interactions.


Asunto(s)
Diseño de Fármacos , Proteínas Hedgehog/antagonistas & inhibidores , Compuestos Macrocíclicos/farmacología , Péptidos/farmacología , Animales , Línea Celular , Proteínas Hedgehog/química , Humanos , Compuestos Macrocíclicos/química , Péptidos/química , Transducción de Señal , Transcripción Genética
9.
Protein Sci ; 26(8): 1584-1594, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28513090

RESUMEN

The design of novel metal-ion binding sites along symmetric axes in protein oligomers could provide new avenues for metalloenzyme design, construction of protein-based nanomaterials and novel ion transport systems. Here, we describe a computational design method, symmetric protein recursive ion-cofactor sampling (SyPRIS), for locating constellations of backbone positions within oligomeric protein structures that are capable of supporting desired symmetrically coordinated metal ion(s) chelated by sidechains (chelant model). Using SyPRIS on a curated benchmark set of protein structures with symmetric metal binding sites, we found high recovery of native metal coordinating rotamers: in 65 of the 67 (97.0%) cases, native rotamers featured in the best scoring model while in the remaining cases native rotamers were found within the top three scoring models. In a second test, chelant models were crossmatched against protein structures with identical cyclic symmetry. In addition to recovering all native placements, 10.4% (8939/86013) of the non-native placements, had acceptable geometric compatibility scores. Discrimination between native and non-native metal site placements was further enhanced upon constrained energy minimization using the Rosetta energy function. Upon sequence design of the surrounding first-shell residues, we found further stabilization of native placements and a small but significant (1.7%) number of non-native placement-based sites with favorable Rosetta energies, indicating their designability in existing protein interfaces. The generality of the SyPRIS approach allows design of novel symmetric metal sites including with non-natural amino acid sidechains, and should enable the predictive incorporation of a variety of metal-containing cofactors at symmetric protein interfaces.


Asunto(s)
Algoritmos , Benchmarking , Quelantes/química , Complejos de Coordinación/química , Metaloproteasas/química , Metales/química , Cationes , Biología Computacional/métodos , Simulación por Computador , Diseño Asistido por Computadora , Modelos Moleculares , Peptidomiméticos/química , Ingeniería de Proteínas , Termodinámica
10.
Methods Mol Biol ; 1414: 173-85, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27094291

RESUMEN

Multinuclear metal ion clusters, coordinated by proteins, catalyze various critical biological redox reactions, including water oxidation in photosynthesis, and nitrogen fixation. Designed metalloproteins featuring synthetic metal clusters would aid in the design of bio-inspired catalysts for various applications in synthetic biology. The design of metal ion-binding sites in a protein chain requires geometrically constrained and accurate placement of several (between three and six) polar and/or charged amino acid side chains for every metal ion, making the design problem very challenging to address. Here, we describe a general computational method to redesign oligomeric interfaces of symmetric proteins for the purpose of creating novel multinuclear metalloproteins with tunable geometries, electrochemical environments, and metal cofactor stability via first and second-shell interactions. The method requires a target symmetric organometallic cofactor whose coordinating ligands resemble the side chains of a natural or unnatural amino acid and a library of oligomeric protein structures featuring the same symmetry as the target cofactor. Geometric interface matches between target cofactor and scaffold are determined using a program that we call symmetric protein recursive ion-cofactor sampler (SyPRIS). First, the amino acid-bound organometallic cofactor model is built and symmetrically aligned to the axes of symmetry of each scaffold. Depending on the symmetry, rigid body and inverse rotameric degrees of freedom of the cofactor model are then simultaneously sampled to locate scaffold backbone constellations that are geometrically poised to incorporate the cofactor. Optionally, backbone remodeling of loops can be performed if no perfect matches are identified. Finally, the identities of spatially proximal neighbor residues of the cofactor are optimized using Rosetta Design. Selected designs can then be produced in the laboratory using genetically incorporated unnatural amino acid technology and tested experimentally for structure and catalytic activity.


Asunto(s)
Aminoácidos/química , Metaloproteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...