Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Magn Reson Med ; 90(5): 1874-1888, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37392412

RESUMEN

PURPOSE: Clinical use of transcranial electrical stimulation (TES) requires accurate knowledge of the injected current distribution in the brain. MR current density imaging (MRCDI) uses measurements of the TES-induced magnetic fields to provide this information. However, sufficient sensitivity and image quality in humans in vivo has only been documented for single-slice imaging. METHODS: A recently developed, optimally spoiled, acquisition-weighted, gradient echo-based 2D-MRCDI method has now been advanced for volume coverage with densely or sparsely distributed slices: The 3D rectilinear sampling (3D-DENSE) and simultaneous multislice acquisition (SMS-SPARSE) were optimized and verified by cable-loop experiments and tested with 1-mA TES experiments for two common electrode montages. RESULTS: Comparisons between the volumetric methods against the 2D-MRCDI showed that relatively long acquisition times of 3D-DENSE using a single slab with six slices hindered the expected sensitivity improvement in the current-induced field measurements but improved sensitivity by 61% in the Laplacian of the field, on which some MRCDI reconstruction methods rely. Also, SMS-SPARSE acquisition of three slices, with a factor 2 CAIPIRINHA (controlled aliasing in parallel imaging results in higher acceleration) acceleration, performed best against the 2D-MRCDI with sensitivity improvements for the ∆ B z , c $$ \Delta {B}_{z,c} $$ and Laplacian noise floors of 56% and 78% (baseline without current flow) as well as 43% and 55% (current injection into head). SMS-SPARSE reached a sensitivity of 67 pT for three distant slices at 2 × 2 × 3 mm3 resolution in 10 min of total scan time, and consistently improved image quality. CONCLUSION: Volumetric MRCDI measurements with high sensitivity and image quality are well suited to characterize the TES field distribution in the human brain.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Cabeza , Fantasmas de Imagen , Campos Magnéticos , Procesamiento de Imagen Asistido por Computador/métodos
2.
Neuroimage ; 277: 120227, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37321357

RESUMEN

Transcranial focused Ultrasound Stimulation (TUS) at low intensities is emerging as a novel non-invasive brain stimulation method with higher spatial resolution than established transcranial stimulation methods and the ability to selectively stimulate also deep brain areas. Accurate control of the focus position and strength of the TUS acoustic waves is important to enable a beneficial use of the high spatial resolution and to ensure safety. As the human skull causes strong attenuation and distortion of the waves, simulations of the transmitted waves are needed to accurately determine the TUS dose distribution inside the cranial cavity. The simulations require information of the skull morphology and its acoustic properties. Ideally, they are informed by computed tomography (CT) images of the individual head. However, suited individual imaging data is often not readily available. For this reason, we here introduce and validate a head template that can be used to estimate the average effects of the skull on the TUS acoustic wave in the population. The template was created from CT images of the heads of 29 individuals of different ages (between 20-50 years), gender and ethnicity using an iterative non-linear co-registration procedure. For validation, we compared acoustic and thermal simulations based on the template to the average of the simulation results of all 29 individual datasets. Acoustic simulations were performed for a model of a focused transducer driven at 500 kHz, placed at 24 standardized positions by means of the EEG 10-10 system. Additional simulations at 250 kHz and 750 kHz at 16 of the positions were used for further confirmation. The amount of ultrasound-induced heating at 500 kHz was estimated for the same 16 transducer positions. Our results show that the template represents the median of the acoustic pressure and temperature maps from the individuals reasonably well in most cases. This underpins the usefulness of the template for the planning and optimization of TUS interventions in studies of healthy young adults. Our results further indicate that the amount of variability between the individual simulation results depends on the position. Specifically, the simulated ultrasound-induced heating inside the skull exhibited strong interindividual variability for three posterior positions close to the midline, caused by a high variability of the local skull shape and composition. This should be taken into account when interpreting simulation results based on the template.


Asunto(s)
Encéfalo , Cráneo , Humanos , Cráneo/diagnóstico por imagen , Cráneo/anatomía & histología , Simulación por Computador , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Ultrasonografía/métodos , Acústica
3.
Phys Med Biol ; 68(2)2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36595245

RESUMEN

Objective.In the field of radiation oncology, the benefit of MRI goes beyond that of providing high soft-tissue contrast images for staging and treatment planning. With the recent clinical introduction of hybrid MRI linear accelerators it has become feasible to map physiological parameters describing diffusion, perfusion, and relaxation during the entire course of radiotherapy, for example. However, advanced data analysis tools are required for extracting qualified prognostic and predictive imaging biomarkers from longitudinal MRI data. In this study, we propose a new prediction framework tailored to exploit temporal dynamics of tissue features from repeated measurements. We demonstrate the framework using a newly developed decomposition method for tumor characterization.Approach.Two previously published MRI datasets with multiple measurements during and after radiotherapy, were used for development and testing:T2-weighted multi-echo images obtained for two mouse models of pancreatic cancer, and diffusion-weighted images for patients with brain metastases. Initially, the data was decomposed using the novel monotonous slope non-negative matrix factorization (msNMF) tailored for MR data. The following processing consisted of a tumor heterogeneity assessment using descriptive statistical measures, robust linear modelling to capture temporal changes of these, and finally logistic regression analysis for stratification of tumors and volumetric outcome.Main Results.The framework was able to classify the two pancreatic tumor types with an area under curve (AUC) of 0.999,P< 0.001 and predict the tumor volume change with a correlation coefficient of 0.513,P= 0.034. A classification of the human brain metastases into responders and non-responders resulted in an AUC of 0.74,P= 0.065.Significance.A general data processing framework for analyses of longitudinal MRI data has been developed and applications were demonstrated by classification of tumor type and prediction of radiotherapy response. Further, as part of the assessment, the merits of msNMF for tumor tissue decomposition were demonstrated.


Asunto(s)
Neoplasias Encefálicas , Imagen por Resonancia Magnética , Animales , Ratones , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/radioterapia , Aceleradores de Partículas , Perfusión , Imagen de Difusión por Resonancia Magnética/métodos
4.
Magn Reson Med ; 89(4): 1469-1480, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36420920

RESUMEN

PURPOSE: The diffusion-weighted SPLICE (split acquisition of fast spin-echo signals) sequence employs split-echo rapid acquisition with relaxation enhancement (RARE) readout to provide images almost free of geometric distortions. However, due to the varying T 2 $$ {}_2 $$ -weighting during k-space traversal, SPLICE suffers from blurring. This work extends a method for controlling the spatial point spread function (PSF) while optimizing the signal-to-noise ratio (SNR) achieved by adjusting the flip angles in the refocusing pulse train of SPLICE. METHODS: An algorithm based on extended phase graph (EPG) simulations optimizes the flip angles by maximizing SNR for a flexibly chosen predefined target PSF that describes the desired k-space density weighting and spatial resolution. An optimized flip angle scheme and a corresponding post-processing correction filter which together achieve the target PSF was tested by healthy subject brain imaging using a clinical 1.5 T scanner. RESULTS: Brain images showed a clear and consistent improvement over those obtained with a standard constant flip angle scheme. SNR was increased and apparent diffusion coefficient estimates were more accurate. For a modified Hann k-space weighting example, considerable benefits resulted from acquisition weighting by flip angle control. CONCLUSION: The presented flexible method for optimizing SPLICE flip angle schemes offers improved MR image quality of geometrically accurate diffusion-weighted images that makes the sequence a strong candidate for radiotherapy planning or stereotactic surgery.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Relación Señal-Ruido , Encéfalo/diagnóstico por imagen , Algoritmos , Aumento de la Imagen/métodos
5.
Magn Reson Med ; 88(2): 986-1001, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35468237

RESUMEN

PURPOSE: To demonstrate a novel method for tracking of head movements during MRI using electroencephalography (EEG) hardware for recording signals induced by native imaging gradients. THEORY AND METHODS: Gradient switching during simultaneous EEG-fMRI induces distortions in EEG signals, which depend on subject head position and orientation. When EEG electrodes are interconnected with high-impedance carbon wire loops, the induced voltages are linear combinations of the temporal gradient waveform derivatives. We introduce head tracking based on these signals (CapTrack) involving 3 steps: (1) phantom scanning is used to characterize the target sequence and a fast calibration sequence; (2) a linear relation between changes of induced signals and head pose is established using the calibration sequence; and (3) induced signals recorded during target sequence scanning are used for tracking and retrospective correction of head movement without prolonging the scan time of the target sequence. Performance of CapTrack is compared directly to interleaved navigators. RESULTS: Head-pose tracking at 27.5 Hz during echo planar imaging (EPI) was demonstrated with close resemblance to rigid body alignment (mean absolute difference: [0.14 0.38 0.15]-mm translation, [0.30 0.27 0.22]-degree rotation). Retrospective correction of 3D gradient-echo imaging shows an increase of average edge strength of 12%/-0.39% for instructed/uninstructed motion with CapTrack pose estimates, with a tracking interval of 1561 ms and high similarity to interleaved navigator estimates (mean absolute difference: [0.13 0.33 0.12] mm, [0.28 0.15 0.22] degrees). CONCLUSION: Motion can be estimated from recordings of gradient switching with little or no sequence modification, optionally in real time at low computational burden and synchronized to image acquisition, using EEG equipment already found at many research institutions.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Imagen Eco-Planar/métodos , Electroencefalografía/métodos , Movimientos de la Cabeza , Imagen por Resonancia Magnética/métodos , Movimiento (Física) , Estudios Retrospectivos
6.
J Magn Reson ; 333: 107103, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34801822

RESUMEN

PURPOSE: MRI can be utilized for quantitative characterization of tissue. To assess e.g. water fractions or diffusion coefficients for compartments in the brain, a decomposition of the signal is necessary. Imposing standard models carries the risk of estimating biased parameters if model assumptions are violated. This work introduces a data-driven multicomponent analysis, the monotonous slope non-negative matrix factorization (msNMF), tailored to extract data features expected in MR signals. METHODS: The msNMF was implemented by extending the standard NMF with monotonicity constraints on the signal profiles and their first derivatives. The method was validated using simulated data, and subsequently applied to both ex vivo DWI data and in vivo relaxometry data. Reproducibility of the method was tested using the latter. RESULTS: The msNMF recovered the multi-exponential signals in the simulated data and showed superiority to standard NMF (based on the explained variance, area under the ROC curve, and coefficient of variation). Diffusion components extracted from the DWI data reflected the cell density of the underlying tissue. The relaxometry analysis resulted in estimates of edema water fractions (EWF) highly correlated with published results, and demonstrated acceptable reproducibility. CONCLUSION: The msNMF can robustly separate MR signals into components with relation to the underlying tissue composition, and may potentially be useful for e.g. tumor tissue characterization.


Asunto(s)
Neoplasias Encefálicas , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Humanos , Reproducibilidad de los Resultados
7.
Neuroimage ; 243: 118517, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34481368

RESUMEN

Magnetic resonance current density imaging (MRCDI) of the human brain aims to reconstruct the current density distribution caused by transcranial electric stimulation from MR-based measurements of the current-induced magnetic fields. So far, the MRCDI data acquisition achieves only a low signal-to-noise ratio, does not provide a full volume coverage and lacks data from the scalp and skull regions. In addition, it is only sensitive to the component of the current-induced magnetic field parallel to the scanner field. The reconstruction problem thus involves coping with noisy and incomplete data, which makes it mathematically challenging. Most existing reconstruction methods have been validated using simulation studies and measurements in phantoms with simplified geometries. Only one reconstruction method, the projected current density algorithm, has been applied to human in-vivo data so far, however resulting in blurred current density estimates even when applied to noise-free simulated data. We analyze the underlying causes for the limited performance of the projected current density algorithm when applied to human brain data. In addition, we compare it with an approach that relies on the optimization of the conductivities of a small number of tissue compartments of anatomically detailed head models reconstructed from structural MR data. Both for simulated ground truth data and human in-vivo MRCDI data, our results indicate that the estimation of current densities benefits more from using a personalized volume conductor model than from applying the projected current density algorithm. In particular, we introduce a hierarchical statistical testing approach as a principled way to test and compare the quality of reconstructed current density images that accounts for the limited signal-to-noise ratio of the human in-vivo MRCDI data and the fact that the ground truth of the current density is unknown for measured data. Our results indicate that the statistical testing approach constitutes a valuable framework for the further development of accurate volume conductor models of the head. Our findings also highlight the importance of tailoring the reconstruction approaches to the quality and specific properties of the available data.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Algoritmos , Simulación por Computador , Impedancia Eléctrica , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Relación Señal-Ruido , Estimulación Transcraneal de Corriente Directa
8.
Magn Reson Med ; 86(6): 3131-3146, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34337785

RESUMEN

PURPOSE: Magnetic resonance current-density imaging (MRCDI) combines MRI with low-intensity transcranial electrical stimulation (TES; 1-2 mA) to map current flow in the brain. However, usage of MRCDI is still hampered by low measurement sensitivity and image quality. METHODS: Recently, a multigradient-echo-based MRCDI approach has been introduced that presently has the best-documented efficiency. This MRCDI approach has now been advanced in three directions and has been validated by phantom and in vivo experiments. First, the importance of optimum spoiling for brain imaging was verified. Second, the sensitivity and spatial resolution were improved by using acquisition weighting. Third, navigators were added as a quality control measure for tracking physiological noise. Combining these advancements, the optimized MRCDI method was tested by using 1 mA TES for two different injection profiles. RESULTS: For a session duration of 4:20 min, the new MRCDI method was able to detect TES-induced magnetic fields at a sensitivity level of 84 picotesla, representing a twofold efficiency increase against our original method. A comparison between measurements and simulations based on personalized head models showed a consistent increase in the coefficient of determination of ΔR2 = 0.12 for the current-induced magnetic fields and ΔR2 = 0.22 for the current flow reconstructions. Interestingly, some of the simulations still clearly deviated from the measurements despite the strongly improved measurement quality. This highlights the utility of MRCDI to improve head models for TES simulations. CONCLUSION: The achieved sensitivity improvement is an important step from proof-of-concept studies toward a broader application of MRCDI in clinical and basic neuroscience research.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Humanos , Espectroscopía de Resonancia Magnética , Fantasmas de Imagen
9.
J Psychiatry Neurosci ; 46(4): E418-E426, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34223741

RESUMEN

Background: Obesity is a frequent somatic comorbidity of major depression, and it has been associated with worse clinical outcomes and brain structural abnormalities. Converging evidence suggests that electroconvulsive therapy (ECT) induces both clinical improvements and increased subcortical grey matter volume in patients with depression. However, it remains unknown whether increased body weight modulates the clinical response and structural neuroplasticity that occur with ECT. Methods: To address this question, we conducted a longitudinal investigation of structural MRI data from the Global ECT-MRI Research Collaboration (GEMRIC) in 223 patients who were experiencing a major depressive episode (10 scanning sites). Structural MRI data were acquired before and after ECT, and we assessed change in subcortical grey matter volume using FreeSurfer and Quarc. Results: Higher body mass index (BMI) was associated with a significantly lower increase in subcortical grey matter volume following ECT. We observed significant negative associations between BMI and change in subcortical grey matter volume, with pronounced effects in the thalamus and putamen, where obese participants showed increases in grey matter volume that were 43.3% and 49.6%, respectively, of the increases found in participants with normal weight. As well, BMI significantly moderated the association between subcortical grey matter volume change and clinical response to ECT. We observed no significant association between BMI and clinical response to ECT. Limitations: Because only baseline BMI values were available, we were unable to study BMI changes during ECT and their potential association with clinical and grey matter volume change. Conclusion: Future studies should take into account the relevance of body weight as a modulator of structural neuroplasticity during ECT treatment and aim to further explore the functional relevance of this novel finding.


Asunto(s)
Peso Corporal , Encéfalo/patología , Trastorno Depresivo Mayor/patología , Trastorno Depresivo Mayor/terapia , Terapia Electroconvulsiva , Sustancia Gris/patología , Encéfalo/diagnóstico por imagen , Trastorno Depresivo Mayor/diagnóstico por imagen , Femenino , Sustancia Gris/diagnóstico por imagen , Humanos , Masculino , Persona de Mediana Edad
10.
Brain Stimul ; 14(3): 488-497, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33706007

RESUMEN

BACKGROUND: Transcranial electric stimulation during MR imaging can introduce safety issues due to coupling of the RF field with the stimulation electrodes and leads. OBJECTIVE: To optimize the stimulation setup for MR current density imaging (MRCDI) and increase maximum stimulation current, a new low-conductivity (σ = 29.4 S/m) lead wire is designed and tested. METHOD: The antenna effect was simulated to investigate the effect of lead conductivity. Subsequently, specific absorption rate (SAR) simulations for realistic lead configurations with low-conductivity leads and two electrode types were performed at 128 MHz and 298 MHz being the Larmor frequencies of protons at 3T and 7T. Temperature measurements were performed during MRI using high power deposition sequences to ensure that the electrodes comply with MRI temperature regulations. RESULTS: The antenna effect was found for copper leads at » RF wavelength and could be reliably eliminated using low-conductivity leads. Realistic lead configurations increased the head SAR and the local head SAR at the electrodes only minimally. The highest temperatures were measured on the rings of center-surround electrodes, while circular electrodes showed little heating. No temperature increase above the safety limit of 39 °C was observed. CONCLUSION: Coupling to the RF field can be reliably prevented by low-conductivity leads, enabling cable paths optimal for MRCDI. Compared to commercial copper leads with safety resistors, the low-conductivity leads had lower total impedance, enabling the application of higher currents without changing stimulator design. Attention must be paid to electrode pads.


Asunto(s)
Imagen por Resonancia Magnética , Conductividad Eléctrica , Impedancia Eléctrica , Estimulación Eléctrica , Imagen por Resonancia Magnética/efectos adversos , Fantasmas de Imagen
11.
J Magn Reson ; 318: 106798, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32755748

RESUMEN

A quality assurance protocol for RF coils is proposed, which can be used for volume (Tx/Rx) and surface (Rx) coils. Following this protocol, a benchmarking of seven coils (from three different MR sites) dedicated to 13C MRI at 3T is reported. Coil performance is particularly important for 3T MRI at the 13C frequency, since the coil-to-sample noise ratio is typically high. The coils are evaluated experimentally using the proposed protocol based on MR spectroscopic imaging performed with two different phantoms: one head-shaped, and one with cylindrical shape and nearly twice the volume of the first one. To achieve an unbiased SNR comparison of volume and array coils, coil combination was done using sensitivity profiles extracted from the data. SNR, noise correlation matrices and example g-factor maps are reported. For globally calibrated, equal excitation angles, the measured SNR shows large differences for the volume coils of up to 115% at the phantom center for a head phantom. The arrays show lower differences in superficial SNR. The sample surface depth at which the volume coils outperform the arrays is estimated to 7 cm, and SNR furthest away from the coil surface is 28% lower for the best array compared to the best volume coil. A broad set of coils for 13C at 3T have been benchmarked. The results reported, and the method used to benchmark them, should guide the 13C community to choose the most suitable coil for a given experiment.

12.
J Neural Eng ; 17(4): 046010, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-32485690

RESUMEN

OBJECTIVE: Low-intensity transcranial ultrasound stimulation (TUS) is emerging as a non-invasive brain stimulation technique with superior spatial resolution and the ability to reach deep brain areas. Medical image-based computational modeling could be an important tool for individualized TUS dose control and targeting optimization, but requires further validation. This study aims to assess the impact of the transducer model on the accuracy of the simulations. APPROACH: Using hydrophone measurements, the acoustic beam of a single-element focused transducer (SEFT) with a flat piezoelectric disc and an acoustic lens was characterized. The acoustic beam was assessed in a homogeneous water bath and after transmission through obstacles (3D-printed shapes and skull samples). The acoustic simulations employed the finite-difference time-domain method and were informed by computed tomography (CT) images of the obstacles. Transducer models of varying complexity were tested representing the SEFT either as a surface boundary condition with variable curvature or also accounting for its internal geometry. In addition, a back-propagated pressure distribution from the first measurement plane was used as source model. The simulations and measurements were quantitatively compared using key metrics for peak location, focus size, intensity and spatial distribution. MAIN RESULTS: While a surface boundary with an adapted, 'effective' curvature radius based on the specifications given by the manufacturer could reproduce the measured focus location and size in a homogeneous water bath, it regularly failed to accurately predict the beam after obstacle transmission. In contrast, models that were based on a one-time calibration to the homogeneous water bath measurements performed substantially better in all cases with obstacles. For one of the 3D-printed obstacles, the simulated intensities deviated substantially from the measured ones, irrespective of the transducer model. We attribute this finding to a standing wave effect, and further studies should clarify its relevance for accurate simulations of skull transmission. SIGNIFICANCE: Validated transducer models are important to ensure accurate simulations of the acoustic beam of SEFTs, in particular in the presence of obstacles such as the skull.


Asunto(s)
Transductores , Terapia por Ultrasonido , Acústica , Encéfalo , Cráneo/diagnóstico por imagen
13.
Magn Reson Med ; 84(2): 519-534, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31960506

RESUMEN

PURPOSE: To test a new parallel imaging strategy for acceleration of hyperpolarized 13 C MR acquisitions based on a 3D blipped stack-of-spirals trajectory and conjugate-gradient SENSE reconstruction with precalibrated sensitivities. METHODS: The blipped stack-of-spirals trajectory was developed for an acceleration factor of 4, based on an undersampled stack-of-spirals with gradient blips during spiral readout. The trajectory was developed with volumetric coverage of a large FOV and with high spatial resolution. High temporal resolution was attained through spectral-spatial excitation and 4 excitations per volume. The blipped stack-of-spirals was evaluated in simulations and phantom experiments. Next, the method was evaluated for kidney and cardiac imaging in 2 separate healthy pigs. RESULTS: Simulation and phantom results showed successful acquisition and reconstruction, but also revealed reconstruction challenges for certain locations and for wide signal sources. For the kidney experiment, the accelerated acquisition showed high similarity to 2 separately acquired fully sampled data sets with matched spatial and temporal resolution, respectively. For the cardiac experiment, the accelerated acquisition proved able to map each metabolite in 3 dimensions within a single cardiac cycle. CONCLUSION: The proposed method demonstrated effective mapping of metabolism in both kidneys and the heart of healthy pigs. Limitations seen in phantom experiments, may be irrelevant for most clinical applications, but should be kept in mind as well as reconstruction challenges related to residual aliasing. All in all, we show that the blipped stack-of-spirals is a relevant parallel imaging method for hyperpolarized human imaging, facilitating better insights into metabolism compared with nonaccelerated acquisition.


Asunto(s)
Algoritmos , Imagenología Tridimensional , Animales , Simulación por Computador , Imagen por Resonancia Magnética , Fantasmas de Imagen , Porcinos
14.
Biol Psychiatry ; 87(5): 451-461, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31561859

RESUMEN

BACKGROUND: Electroconvulsive therapy (ECT) is associated with volumetric enlargements of corticolimbic brain regions. However, the pattern of whole-brain structural alterations following ECT remains unresolved. Here, we examined the longitudinal effects of ECT on global and local variations in gray matter, white matter, and ventricle volumes in patients with major depressive disorder as well as predictors of ECT-related clinical response. METHODS: Longitudinal magnetic resonance imaging and clinical data from the Global ECT-MRI Research Collaboration (GEMRIC) were used to investigate changes in white matter, gray matter, and ventricle volumes before and after ECT in 328 patients experiencing a major depressive episode. In addition, 95 nondepressed control subjects were scanned twice. We performed a mega-analysis of single subject data from 14 independent GEMRIC sites. RESULTS: Volumetric increases occurred in 79 of 84 gray matter regions of interest. In total, the cortical volume increased by mean ± SD of 1.04 ± 1.03% (Cohen's d = 1.01, p < .001) and the subcortical gray matter volume increased by 1.47 ± 1.05% (d = 1.40, p < .001) in patients. The subcortical gray matter increase was negatively associated with total ventricle volume (Spearman's rank correlation ρ = -.44, p < .001), while total white matter volume remained unchanged (d = -0.05, p = .41). The changes were modulated by number of ECTs and mode of electrode placements. However, the gray matter volumetric enlargements were not associated with clinical outcome. CONCLUSIONS: The findings suggest that ECT induces gray matter volumetric increases that are broadly distributed. However, gross volumetric increases of specific anatomically defined regions may not serve as feasible biomarkers of clinical response.


Asunto(s)
Trastorno Depresivo Mayor , Terapia Electroconvulsiva , Encéfalo/diagnóstico por imagen , Trastorno Depresivo Mayor/terapia , Sustancia Gris/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
15.
Brain Stimul ; 12(6): 1367-1380, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31401074

RESUMEN

BACKGROUND: Low-intensity transcranial focused ultrasound stimulation (TFUS) holds great promise as a highly focal technique for transcranial stimulation even for deep brain areas. Yet, knowledge about the safety of this novel technique is still limited. OBJECTIVE: To systematically review safety related aspects of TFUS. The review covers the mechanisms-of-action by which TFUS may cause adverse effects and the available data on the possible occurrence of such effects in animal and human studies. METHODS: Initial screening used key term searches in PubMed and bioRxiv, and a review of the literature lists of relevant papers. We included only studies where safety assessment was performed, and this results in 33 studies, both in humans and animals. RESULTS: Adverse effects of TFUS were very rare. At high stimulation intensity and/or rate, TFUS may cause haemorrhage, cell death or damage, and unintentional blood-brain barrier (BBB) opening. TFUS may also unintentionally affect long-term neural activity and behaviour. A variety of methods was used mainly in rodents to evaluate these adverse effects, including tissue staining, magnetic resonance imaging, temperature measurements and monitoring of neural activity and behaviour. In 30 studies, adverse effects were absent, even though at least one Food and Drug Administration (FDA) safety index was frequently exceeded. Two studies reported microhaemorrhages after long or relatively intense stimulation above safety limits. Another study reported BBB opening and neuronal damage in a control condition, which intentionally and substantially exceeded the safety limits. CONCLUSION: Most studies point towards a favourable safety profile of TFUS. Further investigations are warranted to establish a solid safety framework for the therapeutic window of TFUS to reliably avoid adverse effects while ensuring neural effectiveness. The comparability across studies should be improved by a more standardized reporting of TFUS parameters.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Conocimientos, Actitudes y Práctica en Salud , Terapia por Ultrasonido/efectos adversos , Terapia por Ultrasonido/métodos , Animales , Mapeo Encefálico/efectos adversos , Mapeo Encefálico/métodos , Hemorragia Cerebral/diagnóstico por imagen , Hemorragia Cerebral/etiología , Humanos , Imagen por Resonancia Magnética/efectos adversos , Imagen por Resonancia Magnética/métodos
16.
MAGMA ; 32(6): 655-667, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31363869

RESUMEN

OBJECTIVES:  The objective of this study was to concurrently acquire an inductive k-space trajectory measure and corresponding imaging data by an MR scanner. MATERIALS AND METHODS:  1D gradient measures were obtained by digital integration, regularized using measured gradient coil currents and recorded individually by the scanner concurrently with raw MR data. Gradient measures were frequency modulated into an RF signal receivable by the scanner, yielding a k-space trajectory measure from the cumulative phase of the acquired data. Generation of the gradient measure and frequency modulation was performed by previously developed custom, versatile circuitry. RESULTS:  For a normal echo planar imaging (EPI) sequence, the acquired k-space trajectory measure yielded slightly improved image quality compared to that obtained from using the scanner's estimated eddy current-compensated k-space trajectory. For a spiral trajectory, the regularized inductive k-space trajectory measure lead to a 76% decrease in the root-mean-square error of the reconstructed image. DISCUSSION:  While the proof-of-concept experiments show potential for further improvement, the feasibility of inductively measuring k-space trajectories and increasing the precision through regularization was demonstrated. The approach may offer an inexpensive method to acquire k-space trajectories concurrently with scanning.


Asunto(s)
Imagen Eco-Planar , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Algoritmos , Artefactos , Calibración , Aumento de la Imagen/métodos , Modelos Estadísticos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador
17.
Magn Reson Med ; 82(6): 2104-2117, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31297868

RESUMEN

PURPOSE: To investigate auto- and pre-calibration coil profile estimation for parallel imaging reconstruction of hyperpolarized 13 C MRI volumetric data. METHODS: Parallel imaging reconstruction was studied with 3 different approaches for coil profile estimation: auto-calibration, phantom calibration, and theoretic calibration. Acquisition was performed with a 3D stack-of-spirals sequence with spectral-spatial excitation and Cartesian undersampling. Parallel imaging reconstructions were done with conjugate gradient SENSE and 3D gridding with inhomogeneity correction. The approaches were compared in simulations with different SNR, through phantom experiments, and in an in vivo pig study focused on the kidneys. All imaging was done with a rigid home-built 12-channel 13 C receive coil at 3T. RESULTS: The phantom calibrated and theoretic approaches resulted in the best structural similarities in simulations and demonstrated higher image quality in the phantom experiments compared to the auto-calibrated approach. In vivo mapping of pyruvate uptake and lactate conversion improved for accelerated acquisitions because of a better temporal resolution. From a practical and image quality point of view, use of theoretic coil profiles led to improved results compared to the other approaches. CONCLUSION: The success of the theoretic coil profile estimation demonstrates a negligible effect of load on sensitivity profiles at the carbon frequency at 3T. Through theoretic or phantom calibrated parallel imaging, accelerated 3D volumes could be reconstructed with sufficient sensitivity, temporal, and spatial resolution to map the metabolism of kidneys exemplifying abdominal organs. This approach overcomes a critical step in the clinical translation of parallel imaging in hyperpolarized 13 C MR.


Asunto(s)
Isótopos de Carbono , Procesamiento de Imagen Asistido por Computador/métodos , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética , Algoritmos , Animales , Calibración , Simulación por Computador , Femenino , Imagenología Tridimensional , Fantasmas de Imagen , Relación Señal-Ruido , Porcinos
18.
Phys Med ; 59: 142-150, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30853265

RESUMEN

PURPOSE: MR Current Density Imaging (MRCDI) involves weak current-injection into the head. The resulting magnetic field changes are measured by MRI. Stray fields pose major challenges since these can dominate the fields caused by tissue currents. We analyze the sources and influences of stray fields. METHODS: First, we supply validation data for a recently introduced MRCDI method with an unprecedented noise floor of ∼0.1 nT in vivo. Second, we assess the accuracy limit of the method and our corresponding cable current correction in phantoms ensuring high signal-to-noise ratio (SNR). Third, we simulate the influence of stray fields on current flow reconstructions for various realistic experimental set-ups. Fourth, we experimentally determine the physiological field variations. Finally, we explore the consequences of head positioning in an exemplary head coil, since off-center positioning provides space for limiting cable-induced fields. RESULTS: The cable correction method performs well except near the cables. Unless correcting for cable currents, the reconstructed current flow is easily misestimated by up to 45% for a realistic experimental set-up. Stray fields dominating the fields caused by tissue currents can occur, e.g. due to a wire segment 20 cm away from the imaged region, or due to a slight cable misalignment of 3°. The noise is increased by 40% due to physiological factors. Minor patient movements can cause field changes of ∼40 nT. Off-centered head positioning can locally reduce SNR by e.g. 30%. CONCLUSIONS: Quantification of stray fields showed that MRCDI requires careful field correction. After cable correction, physiological noise is a limiting factor.


Asunto(s)
Campos Magnéticos , Imagen por Resonancia Magnética/métodos , Artefactos , Imagen por Resonancia Magnética/instrumentación , Fantasmas de Imagen , Relación Señal-Ruido
19.
Ugeskr Laeger ; 181(9)2019 Feb 25.
Artículo en Danés | MEDLINE | ID: mdl-30799812

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver disease with an estimated overall prevalence of 25% in the global adult population. Liver biopsy is the gold standard for the diagnosis of NAFLD. However, the risk of complications and collection of only 1/50,000 of the total liver volume, limits this diagnostic method in an unselected population. Non-invasive diag-nostic methods are warranted, and magnetic resonance imaging of the liver for NAFLD has shown promising results.


Asunto(s)
Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Adulto , Humanos
20.
Magn Reson Med ; 81(2): 773-780, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30159924

RESUMEN

PURPOSE: For rapid spatial mapping of gamma-aminobutyric acid (GABA) at the increased sensitivity and spectral separation for ultra-high magnetic field strength (7 tesla [T]), an accelerated edited magnetic resonance spectroscopic imaging technique was developed and optimized for the human brain at 7 T. METHODS: A MEGA-sLASER sequence was used for GABA editing and volume selection to maximize editing efficiency and minimize chemical shift displacement errors. To accommodate the high bandwidth requirements at 7 T, a single-shot echo planar readout was used for rapid simultaneous encoding of the temporal dimension and 1 spatial. B0 and B1 field aspects specific for 7 T were studied together with correction procedures, and feasibility of the EPSI MEGA-sLASER technique was tested in vivo in 5 healthy subjects. RESULTS: Localized edited spectra could be measured in all subjects giving spatial GABA signal distributions over a central brain region, having 45- to 50-Hz spatial intervoxel B0 field variations and up to 30% B1 field deviations. MEGA editing was found unaffected by the B0 inhomogeneities for the optimized sequence. The correction procedures reduced effects of intervoxel B0 inhomogeneities, corrected for spatial editing efficiency variations, and compensated for GABA resonance phase and frequency shifts from subtle motion and acquisition instabilities. The optimized oscillating echo-planar gradient scheme permitted full spectral acquisition at 7 T and exhibited minimal spectral-spatial ghosting effects for the selected brain region. CONCLUSION: The EPSI MEGA-sLASER technique was shown to provide time-efficient mapping of regional variations in cerebral GABA in a central volume of interest with spatial B1 and B0 field variations typical for 7 T.


Asunto(s)
Imagen Eco-Planar , Espectroscopía de Resonancia Magnética , Ácido gamma-Aminobutírico/química , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Rayos Láser , Campos Magnéticos , Masculino , Persona de Mediana Edad , Movimiento (Física) , Oscilometría , Fantasmas de Imagen , Reproducibilidad de los Resultados , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...