Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Plant ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38720462

RESUMEN

N6-Methyladenosine (m6A) is one of the most abundant modifications of eukaryotic mRNA, but its comprehensive biological functionality remains further exploration. In this study, we identified and characterized a new flowering-promoting gene, EARLY HEADING DATE6 (EHD6), in rice. EHD6 encodes an RNA recognition motif (RRM)-containing RNA binding protein that is localized in the non-membranous cytoplasm ribonucleoprotein (RNP) granules and can bind both m6A-modified RNA and unmodified RNA indiscriminately. We found that EHD6 can physically interact with YTH07, a YTH (YT521-B homology) domain-containing m6A reader. We showed that their interaction enhances the binding of an m6A-modified RNA and triggers relocation of a portion of YTH07 from the cytoplasm into RNP granules through phase-separated condensation. Within these condensates, the mRNA of a rice flowering repressor, CONSTANS-like 4 (OsCOL4), becomes sequestered, leading to a reduction in its protein abundance and thus accelerated flowering through the Early heading date 1 pathway. Taken together, these results not only shed new light on the molecular mechanism of efficient m6A recognition by the collaboration between an RNA binding protein and YTH family m6A reader, but also uncover the potential for m6A-mediated translation regulation through phase-separated ribonucleoprotein condensation in rice.

2.
Plant Biotechnol J ; 22(3): 751-758, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37932934

RESUMEN

Heading date (or flowering time) is a key agronomic trait that affects seasonal and regional adaption of rice cultivars. An unoptimized heading date can either not achieve a high yield or has a high risk of encountering abiotic stresses. There is a strong demand on the mild to moderate adjusting the heading date in breeding practice. Genome editing is a promising method which allows more precise and faster changing the heading date of rice. However, direct knock out of major genes involved in regulating heading date will not always achieve a new germplasm with expected heading date. It is still challenging to quantitatively adjust the heading date of elite cultivars with best adaption for broader region. In this study, we used a CRISPR-Cas9 based genome editing strategy called high-efficiency multiplex promoter-targeting (HMP) to generate novel alleles at cis-regulatory regions of three major heading date genes: Hd1, Ghd7 and DTH8. We achieved a series of germplasm with quantitative variations of heading date by editing promoter regions and adjusting the expression levels of these genes. We performed field trials to screen for the best adapted lines for different regions. We successfully expanded an elite cultivar Ningjing8 (NJ8) to a higher latitude region by selecting a line with a mild early heading phenotype that escaped from cold stress and achieved high yield potential. Our study demonstrates that HMP is a powerful tool for quantitatively regulating rice heading date and expanding elite cultivars to broader regions.


Asunto(s)
Oryza , Oryza/metabolismo , Sitios de Carácter Cuantitativo , Sistemas CRISPR-Cas/genética , Fitomejoramiento , Regiones Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética
3.
Cell ; 186(17): 3577-3592.e18, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37499659

RESUMEN

Hybrid sterility restricts the utilization of superior heterosis of indica-japonica inter-subspecific hybrids. In this study, we report the identification of RHS12, a major locus controlling male gamete sterility in indica-japonica hybrid rice. We show that RHS12 consists of two genes (iORF3/DUYAO and iORF4/JIEYAO) that confer preferential transmission of the RHS12-i type male gamete into the progeny, thereby forming a natural gene drive. DUYAO encodes a mitochondrion-targeted protein that interacts with OsCOX11 to trigger cytotoxicity and cell death, whereas JIEYAO encodes a protein that reroutes DUYAO to the autophagosome for degradation via direct physical interaction, thereby detoxifying DUYAO. Evolutionary trajectory analysis reveals that this system likely formed de novo in the AA genome Oryza clade and contributed to reproductive isolation (RI) between different lineages of rice. Our combined results provide mechanistic insights into the genetic basis of RI as well as insights for strategic designs of hybrid rice breeding.


Asunto(s)
Tecnología de Genética Dirigida , Oryza , Hibridación Genética , Oryza/genética , Fitomejoramiento/métodos , Aislamiento Reproductivo , Infertilidad Vegetal
4.
Plant Sci ; 329: 111546, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36464025

RESUMEN

N6-methyladenosine (m6A) is the most widely distributed and most abundant type of mRNA modification in eukaryotic. It provides a posttranscriptional level regulation of gene expression by regulating pre-mRNA splicing, mRNA degradation, or mRNA translational efficiency etc. The function of m6A modification is decoded by binding proteins that can specially bind to m6A. YT521-B homology (YTH) family proteins are the most important m6A-binding proteins in mammals and Arabidopsis. However, their roles in growth and development remain unknown. Here, we demonstrated that the YTH family proteins YTH03, YTH05 and YTH10 specifically bind to m6A-containing RNAs. Knockout of YTH03, YTH05 or YTH10 causes reduced plant height. Further research showed that simultaneously knockout of YTH03, YTH05 and YTH10 shows severe dwarf phenotype, suggesting these three genes regulate rice plant height in a functionally redundant manner. Additional transcriptome study showed that the reduced plant height of the yth03/05/10 triple mutant may be due to the blocked of diterpenoid and brassinolide synthesis pathway. Overall, we demonstrate that YTH03, YTH05 and YTH10 are all the m6A readers in rice and redundantly regulate rice plant height through the hormonal related pathway.


Asunto(s)
Arabidopsis , Oryza , Animales , Proteínas Portadoras/genética , Oryza/genética , Unión Proteica , Arabidopsis/genética , ARN Mensajero/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Mamíferos/genética , Mamíferos/metabolismo
6.
New Phytol ; 230(3): 943-956, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33341945

RESUMEN

Rice is a facultative short day (SD) plant. In addition to serving as a model plant for molecular genetic studies of monocots, rice is a staple crop for about half of the world's population. Heading date is a critical agronomic trait, and many genes controlling heading date have been cloned over the last 2 decades. The mechanism of flowering in rice from recognition of day length by leaves to floral activation in the shoot apical meristem has been extensively studied. In this review, we summarise current progress on transcriptional and post-transcriptional regulation of heading date in rice, with emphasis on post-translational modifications of key regulators, including Heading date 1 (Hd1), Early heading date 1 (Ehd1), Grain number, plant height, and heading date7 (Ghd7). The contribution of heading date genes to heterosis and the expansion of rice cultivation areas from low-latitude to high-latitude regions are also discussed. To overcome the limitations of diverse genetic backgrounds used in heading date studies and to gain a clearer understanding of flowering in rice, we propose a systematic collection of genetic resources in a common genetic background. Strategies in breeding adapted cultivars by rational design are also discussed.


Asunto(s)
Oryza , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/metabolismo , Fotoperiodo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...