Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Behav Sci (Basel) ; 14(3)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38540464

RESUMEN

Research on parental burnout has focused more on its antecedents than on its consequences. Burned-out parents may experience a series of behavioral changes, negatively affecting their children's physical and mental development. This study examined the effects of primary caregivers' parental burnout on adolescents' development and the mediating role of negative parenting styles. This study used a time-lagged design, and data were collected at three different time points. Adolescents were asked to identify their primary caregivers, and parents were asked whether they were the primary caregivers of their children. Thereafter, paired data from the children and primary caregivers were collected. A total of 317 junior middle school students (178 boys, Mage = 14.20 ± 0.8 years) and primary caregivers (71 fathers, Mage = 42.20 ± 4.53 years) from Henan province participated. Primary caregivers' parental burnout was positively associated with negative parenting styles, and negative parenting styles mediated the relationship between parental burnout and adolescent development. From the perspective of prevention-focused interventions, it is necessary to focus on preventing the occurrence of parental burnout. Further, parents should try to avoid using abusive behaviors toward their children and neglecting them.

2.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38475050

RESUMEN

Latent Low-Rank Representation (LatLRR) has emerged as a prominent approach for fusing visible and infrared images. In this approach, images are decomposed into three fundamental components: the base part, salient part, and sparse part. The aim is to blend the base and salient features to reconstruct images accurately. However, existing methods often focus more on combining the base and salient parts, neglecting the importance of the sparse component, whereas we advocate for the comprehensive inclusion of all three parts generated from LatLRR image decomposition into the image fusion process, a novel proposition introduced in this study. Moreover, the effective integration of Convolutional Neural Network (CNN) technology with LatLRR remains challenging, particularly after the inclusion of sparse parts. This study utilizes fusion strategies involving weighted average, summation, VGG19, and ResNet50 in various combinations to analyze the fusion performance following the introduction of sparse parts. The research findings show a significant enhancement in fusion performance achieved through the inclusion of sparse parts in the fusion process. The suggested fusion strategy involves employing deep learning techniques for fusing both base parts and sparse parts while utilizing a summation strategy for the fusion of salient parts. The findings improve the performance of LatLRR-based methods and offer valuable insights for enhancement, leading to advancements in the field of image fusion.

3.
Food Chem X ; 21: 101159, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38328697

RESUMEN

Dioscorea opposita Thumb. cv. Tiegun is commonly consumed as both food and traditional Chinese medicine, which has a history of more than two thousand years. Harvest time directly affects its quality, but few studies have focused on metabolic changes during the harvesting process. Here, a comprehensive metabolomics approach was performed to determine the metabolic profiles during six harvest stages. Thirty eight metabolites with significant differences were determined as crucial participants. Related metabolic pathways including phenylalanine, tyrosine and tryptophan biosynthesis, stilbenoid, diarylheptanoid and gingerol biosynthesis, phenylpropanoid biosynthesis, flavonoid biosynthesis and tryptophan metabolism were the most active pathways during harvest. The results revealed that temperature has a significant impact on quality formation, which suggested that Dioscorea opposita thumb. cv. Tiegun harvested after frost had higher potential value of traditional Chinese medicine. This finding not only offered valuable guidance for yam production, but also provided essential information for assessing its quality.

4.
Artículo en Inglés | MEDLINE | ID: mdl-37944985

RESUMEN

Objective: This study aimed to evaluate the associations between dietary and microbiological factors, and the levels and dynamics of 5-amino valeric acid betaine (5-AVAB) in patients with type 2 diabetes (T2D) through a prospective nested case-control study. An added meta-analysis aimed to provide a comprehensive evaluation of the relationship between 5-AVAB levels and T2D risk. Methods: A total of 1200 T2D patients and 1200 age- and sex-matched controls were recruited for this study. Dietary information was collected through 24-hour dietary recall questionnaires, while fecal samples were analyzed for gut microbiota composition using 16S rRNA gene sequencing. 5-AVAB levels were measured in plasma samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Multivariate logistic regression and general linear models were applied to evaluate the associations between 5-AVAB levels, dietary factors, and gut microbiota composition. Results: The T2D patients exhibited significantly lower plasma 5-AVAB concentrations compared to the control group (P < .001). Lower 5-AVAB levels were associated with higher odds of T2D (adjusted OR = 2.89, 95% CI: 1.76-4.74). Higher intake of dietary factors, including fiber and polyunsaturated fatty acids (PUFAs), were positively associated with 5-AVAB levels. Furthermore, specific bacterial taxa were significantly associated with 5-AVAB levels. A meta-analysis of five studies corroborated the inverse association between 5-AVAB and T2D risk (pooled OR = 2.68, 95% CI: 1.61-4.46). Conclusion: Our findings suggest that lower 5-AVAB levels are associated with an increased risk of T2D. Dietary factors and gut microbiota composition appear to significantly influence 5-AVAB levels. The potential use of 5-AVAB as a therapeutic target in T2D management is an exciting area of research that requires further investigation. If successful, it could lead to new treatment options for T2D patients, ultimately improving their long-term health outcomes and quality of life.

5.
Environ Pollut ; 335: 122337, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37562532

RESUMEN

Plant roots continuously influence the rhizosphere, which also serves as a recruitment site for microorganisms with desirable functions. The development of genetically engineered (GE) crop varieties has offered unparalleled yield advantages. However, in-depth research on the effects of GE crops on the rhizosphere microbiome is currently insufficient. We used a triple-transgenic soybean cultivar (JD606) that is resistant to insects, glyphosate, and drought, along with its control, ZP661, and JD606 treated with glyphosate (JD606G). Using 16S and ITS rDNA sequencing, their effects on the taxonomy and function of the bacterial and fungal communities in the rhizosphere, surrounding, and bulk soil compartment niches were determined. Alpha diversity demonstrated a strong influence of JD606 and JD606G on bacterial Shannon diversity. Both treatments significantly altered the soil's pH and nitrogen content. Beta diversity identified the soil compartment niche as a key factor with a significant probability of influencing the bacterial and fungal communities associated with soybeans. Further analysis showed that the rhizosphere effect had a considerable impact on bacterial communities in JD606 and JD606G soils but not on fungal communities. Microbacterium, Bradyrhizobium, and Chryseobacterium were found as key rhizobacterial nodes. In addition, the LEfSe analysis identified biomarker taxa with plant-beneficial attributes, demonstrating rhizosphere-driven microbial recruitment. FUNGuild, Bugbase, and FAPROTAX functional predictions showed that ZP661 soils had more plant pathogen-associated microbes, while JD606 and JD606G soils had more stress-tolerance, nitrogen, and carbon cycle-related microbes. Bacterial rhizosphere networks had more intricate topologies than fungal networks. Furthermore, correlation analysis revealed that the bacteria and fungi with higher abundances exhibited varying degrees of positive and negative correlations. Our findings shed new light on the niche partitioning of bacterial and fungal communities in soil. It also indicates that following triple-transgenic soybean cultivation and glyphosate application, plant roots recruit microbes with beneficial taxonomic and functional traits in the rhizosphere.


Asunto(s)
Glycine max , Microbiota , Rizosfera , Suelo/química , Bacterias/genética , Raíces de Plantas/microbiología , Microbiología del Suelo , Glifosato
6.
Ecotoxicol Environ Saf ; 249: 114373, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36508838

RESUMEN

INTRODUCTION: Aluminum is everywhere in nature and is a recognized neurotoxicant closely associated with various neurodegenerative diseases. Neuroinflammation occurs in the early stage of neurodegenerative diseases, but the underlying mechanism by which aluminum induces neuroinflammation remains unclear. MATERIAL AND METHODS: A 3-month subchronic aluminum exposure mouse model was established by drinking water containing aluminum chloride (AlCl3). Microglia BV2 cells and hippocampal neuron HT22 cells were treated with AlCl3 in vitro. BBG and YC-1 were used as intervention agents. RESULTS: Aluminum could activate microglia and increase the level of extracellular ATP, stimulate P2X7 receptor, HIF-1α, activate NLRP3 inflammasome and CASP-1, release more cytokine IL-1ß, and induce an inflammatory response in nerve cells. There was a mutual regulatory relationship between P2X7 and HIF-1α at mRNA and protein levels. The co-culture system of BV2-HT22 cells observed that conditioned medium from microglia treated with aluminum could aggravate neuronal morphological damage, inflammatory response and death. While BBG and YC-1 intervention could rescue these injuries to some extent. CONCLUSION: The P2X7-NLRP3 pathway was involved in aluminum-induced neuroinflammation and injury. P2X7 and HIF-1α might mutually regulate and promote the progression of neuroinflammation, both BBG and YC-1 could relieve it.


Asunto(s)
Aluminio , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedades Neuroinflamatorias , Receptores Purinérgicos P2X7 , Animales , Ratones , Aluminio/toxicidad , Aluminio/metabolismo , Inflamasomas/metabolismo , Enfermedades Neuroinflamatorias/inducido químicamente , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo
7.
Biochem Pharmacol ; 202: 115140, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35700760

RESUMEN

Long-term exposure to environmental aluminum was found to be related to the occurrence and development of neurodegenerative diseases. Energy metabolism disorders, one of the pathological features of neurodegenerative diseases, may occur in the early stage of the disease and are of potential intervention significance. Here, sub-chronic aluminum exposure mouse model was established, and metformin was used to intervene. We found that sub-chronic aluminum exposure decreased the protein levels of phosphorylation AMPK (p-AMPK), glucose transporter 1 (GLUT1) and GLUT3, taking charge of glucose uptake in the brain, reduced the levels of lactate shuttle-related proteins monocarboxylate transporter 4 (MCT4) and MCT2, as well as lactate content in the cerebral cortex, while increased hypoxia-inducible factor-1α (HIF-1α) level to drive downstream pyruvate dehydrogenase kinase 1 (PDK1) expression, thereby inhibiting pyruvate dehydrogenase (PDH) activity, and ultimately led to ATP depletion, neuronal death, and cognitive dysfunction. However, metformin could rescue these injuries. Thus, it came to a conclusion that aluminum could damage glucose uptake, interfere with astrocyte-neuron lactate shuttle (ANLS), interrupt the balance in energy metabolism, and resulting in cognitive function, while metformin has a neuroprotective effect against the disorder of energy metabolism caused by aluminum in mice.


Asunto(s)
Disfunción Cognitiva , Metformina , Proteínas Quinasas Activadas por AMP/metabolismo , Aluminio/toxicidad , Animales , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Metabolismo Energético/fisiología , Glucosa/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ácido Láctico/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Ratones
8.
Chemosphere ; 288(Pt 2): 132556, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34648793

RESUMEN

Aluminum is the most abundant metal element in the Earth's crust, which exists naturally in the form of aluminum compounds. Aluminum is mainly absorbed through the gastrointestinal tract, which varies with different aluminum compounds. During this process, aluminum could induce the disruption of intestinal mucosa barrier. However, its underlying mechanism has not been elucidated yet. Previous studies have reported that aluminum can firstly promote the apoptosis of intestinal epithelial cells, destroy the structure of tight-junction proteins, and increase the intestinal permeability, injuring the mechanical barrier of gut. Also, it can induce the activation of immune cells to secrete inflammatory factors, and trigger immune responses, interfering with immune barrier. Moreover, aluminum treatment can regulate intestinal composition and bio-enzyme activity, impairing the function of chemical barrier. In addition, aluminum accumulation can induce an imbalance of the intestinal flora, inhibit the growth of beneficial bacteria, and promote the proliferation of harmful bacteria, which ultimately disrupting biological barrier. Collectively, aluminum may do extensive damage to intestinal barrier function covering mechanical barrier, immune barrier, chemical barrier and biological barrier.


Asunto(s)
Aluminio , Aluminio/toxicidad
9.
Food Chem Toxicol ; 157: 112591, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34614429

RESUMEN

INTRODUCTION: Aluminum is a kind of chemical contaminants in food which can induce neurotoxicity. Aluminum exposure is closely related to neurodegenerative diseases (ND), in which neuroinflammation might involve. However, the molecular mechanism of aluminum-induced neuroinflammation through pyroptosis is not fully clarified yet. MATERIAL AND METHODS: The mice model of subacute exposure to aluminum chloride (AlCl3) was established. BV2 microglia cells was treated with AlCl3 in vitro. Resveratrol (Rsv) was adopted as intervention agent. RESULTS: Our results showed that aluminum induced cognitive impairment, destroying blood brain barrier (BBB), and causing nerve injury in mice. Meanwhile, aluminum could stimulate nucleotide oligomerization domain-like receptor family pyrin domain containing protein 3 (NLRP3) inflammasome assembly and activate caspase-1 (CASP1), inducing gasdermin D (GSDMD)-mediated pyroptosis signaling, releasing cytokines IL-1ß and IL-18, further promoting the activation of glial cells to magnify neuroinflammatory response. Moreover, DEAD-box helicase 3 X-linked (DDX3X) and stress granule RasGAP SH3-domain-binding protein 1 (G3BP1) both participated in neuroinflammation induced by aluminum. When co-treated with Rsv, these injuries were alleviated to some extent. CONCLUSION: Aluminum exposure could induce nerve cell pyroptosis and neuroinflammation by DDX3X-NLRP3 inflammasome signaling pathway, which could be rescued via Rsv activating sirtuin 1 (SIRT1).


Asunto(s)
Aluminio/toxicidad , Cognición/efectos de los fármacos , ARN Helicasas DEAD-box/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Cloruro de Aluminio/toxicidad , Animales , Barrera Hematoencefálica/efectos de los fármacos , Western Blotting , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/ultraestructura , Técnica del Anticuerpo Fluorescente , Suspensión Trasera , Inflamasomas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Prueba del Laberinto Acuático de Morris/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa
10.
Yi Chuan ; 43(5): 487-500, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33972218

RESUMEN

Low pH with aluminum (Al) toxicity are the main limiting factors affecting crop production in acidic soil. Selection of legume crops with acid tolerance and nitrogen-fixation ability should be one of the effective measures to improve soil quality and promote agricultural production. The role of the rhizosphere microorganisms in this process has raised concerns among the research community. In this study, BX10 (Al-tolerant soybean) and BD2 (Al-sensitive soybean) were selected as plant materials. Acidic soil was used as growth medium. The soil layers from the outside to the inside of the root are bulk soil (BS), rhizosphere soil at two sides (SRH), rhizosphere soil after brushing (BRH) and rhizosphere soil after washing (WRH), respectively. High-throughput sequencing of 16S rDNA amplicons of the V4 region using the Illumina MiSeq platform was performed to compare the differences of structure, function and molecular genetic diversity of rhizosphere bacterial community of different genotypes of soybean. The results showed that there was no significant difference in alpha diversity and beta diversity in rhizosphere bacterial community among the treatments. PCA and PCoA analysis showed that BRH and WRH had similar species composition, while BS and SRH also had similar species composition, which indicated that plant mainly affected the rhizosphere bacterial community on sampling compartments BRH and WRH. The composition and abundance of rhizosphere bacterial community among the treatments were then compared at different taxonomic levels. The ternary diagram of phylum level showed that Cyanobacteria were enriched in WRH. Statistical analysis showed that the roots of Al-tolerant soybean BX10 had an enrichment effect on plant growth promoting rhizobacteria (PGPR), which included Cyanobacteria, Bacteroides, Proteobacteria and some genera and species related to the function of nitrogen fixation and aluminum tolerance. The rhizosphere bacterial community from different sampling compartments of the same genotype soybean also were selectively enriched in different PGPR. In addition, the functional prediction analysis showed that there was no significant difference in the classification and abundance of COG (clusters of orthologous groups of proteins) function among different treatments. Several COGs might be directly related to nitrogen fixation, including COG0347, COG1348, COG1433, COG2710, COG3870, COG4656, COG5420, COG5456 and COG5554. Al-sensitive soybean BD2 was more likely to be enriched in these COGs than BX10 in BRH and WRH, and the possible reason remains to be further investigated in the future.


Asunto(s)
Rizosfera , Suelo , Aluminio , Raíces de Plantas , Microbiología del Suelo , Glycine max
11.
Sci Rep ; 11(1): 10788, 2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34031500

RESUMEN

Shikonin and its derivatives are the main components of traditional Chinese medicine, Zicao. The pharmacological potential of shikonin and its derivatives have been extensively studied. Yet, less is known about the microbial assemblages associated with shikonin producing Borage plants. We studied microbial profiles of two Borage species, Echium plantagineum (EP) and Lithospermum erythrorhizon (LE), to identify the dynamics of microbial colonization pattern within three rhizo-compatments and two distinct soil types. Results of α and ß-diversity via PacBio sequencing revealed significantly higher microbial richness and diversity in the natural soil along with a decreasing microbial gradient across rhizosphere to endosphere. Our results displayed genotype and soil type-dependent fine-tuning of microbial profiles. The host plant was found to exert effects on the physical and chemical properties of soil, resulting in reproducibly different micro-biota. Analysis of differentially abundant microbial OTUs displayed Planctomycetes and Bacteroidetes to be specifically enriched in EP and LE rhizosphere while endosphere was mostly prevailed by Cyanobacteria. Network analysis to unfold co-existing microbial species displayed different types of positive and negative interactions within different communities. The data provided here will help to identify microbes associated with different rhizo-compartments of potential host plants. In the future, this might be helpful for manipulating the keystone microbes for ecosystem functioning.


Asunto(s)
Bacterias/clasificación , Borago/crecimiento & desarrollo , Naftoquinonas/metabolismo , Análisis de Secuencia de ADN/métodos , Bacterias/genética , Bacterias/aislamiento & purificación , Borago/metabolismo , Borago/microbiología , ADN Bacteriano/genética , ADN Ribosómico/genética , Concentración de Iones de Hidrógeno , Filogenia , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , ARN Ribosómico 16S/genética , Rizosfera , Microbiología del Suelo
12.
J Colloid Interface Sci ; 558: 123-136, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31585221

RESUMEN

The morphology of catalyst is a very important factor influencing the photocatalytic activity of the catalyst. Owing to its scientific and technological importance, controllable preparation of photocatalysts with different morphologies has been studied. In this work, BiOIO3/g-C3N4 heterojunction composites are synthesized using hydrothermal method and the composites with different morphologies are fabricated by adjusting the amount of NaOH in precursor solutions to control the growth of BiOIO3 crystal plane. The physicochemical properties of BiOIO3/g-C3N4 heterojunction composites were investigated by XRD, XPS, FTIR, SEM, TEM, HRTEM, BET, UV-vis DRS and PL characterization. The effect of the BiOIO3 morphology on the photocatalytic efficiency of BiOIO3/g-C3N4 heterojunction composites was evaluated by photocatalytic removal of gas-phase Hg0 under visible light irradiation. When the morphology of BiOIO3 is regular square-like, BiOIO3/g-C3N4 has the optimal removal efficiency 92.6% of Hg0. Finally, electron-hole migration path and photocatalytic mechanism of catalysts are proposed.

13.
Int J Genomics ; 2019: 7350414, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30923713

RESUMEN

Superoxide dismutase (SOD) is an essential enzyme of the plant antioxidant system that responds to oxidative damage caused by adverse conditions. However, little is known about the SOD gene family in Vitis vinifera (Vv). In the present study, ten SOD genes, including 6 copper/zinc SODs, 2 iron SODs, and 2 manganese SODs, were identified in the grapevine genome where they were unevenly distributed on 12 chromosomes. Ten VvSOD genes were divided into three main groups based on phylogenetic analysis, subcellular localization, and the distribution of conserved protein motifs. Additionally, many cis-elements related to different stresses were found in the promoters of the 10 VvSOD genes. Syntenic analysis revealed that VvMSD1 and VvMSD2 were derived from segmental duplication, and VvCSD4 and VvCSD5 belong to a pair of tandemly duplicated genes. Gene expression analysis based on microarray data showed that the 10 VvSOD genes were expressed in all the tested tissues. Interestingly, the segmentally duplicated gene pair (VvMSD1 and VvMSD2) exhibited differential expression patterns in various organs. In contrast, the tandemly duplicated gene pair (VvCSD4 and VvCSD5) displayed similar expression patterns in the tested organs. Our results provide a basis for further functional research on the SOD gene family in grapevine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...