Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.153
Filtrar
1.
Mol Med ; 30(1): 58, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720283

RESUMEN

BACKGROUND: Vascular calcification (VC) is a complication in diabetes mellitus (DM) patients. Osteogenic phenotype switching of vascular smooth muscle cells (VSMCs) plays a critical role in diabetes-related VC. Mitophagy can inhibit phenotype switching in VSMCs. This study aimed to investigate the role of the glucagon-like peptide-1 receptor (GLP-1R) agonist exendin 4 (EX4) in mitophagy-induced phenotype switching. MATERIALS AND METHODS: The status of VC in T2DM mice was monitored using Von Kossa and Alizarin Red S (ARS) staining in mouse aortic tissue. Human aortic smooth muscle cells were cultured in high glucose (HG) and ß-glycerophosphate (ß-GP) conditioned medium. Accumulation of LC3B and p62 was detected in the mitochondrial fraction. The effect of EX4 in vitro and in vivo was investigated by knocking down AMPKα1. RESULTS: In diabetic VC mice, EX4 decreased the percentage of von Kossa/ARS positive area. EX4 inhibited osteogenic differentiation of HG/ß-GP-induced VSMCs. In HG/ß-GP-induced VSMCs, the number of mitophagosomes was increased, whereas the addition of EX4 restored mitochondrial function, increased the number of mitophagosome-lysosome fusions, and reduced p62 in mitochondrial frictions. EX4 increased the phosphorylation of AMPKα (Thr172) and ULK1 (Ser555) in HG/ß-GP-induced VSMCs. After knockdown of AMPKα1, ULK1 could not be activated by EX4. The accumulation of LC3B and p62 could not be reduced after AMPKα1 knockdown. Knockdown of AMPKα1 negated the therapeutic effects of EX4 on VC of diabetic mice. CONCLUSION: EX4 could promote mitophagy by activating the AMPK signaling pathway, attenuate insufficient mitophagy, and thus inhibit the osteogenic phenotype switching of VSMCs.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Exenatida , Receptor del Péptido 1 Similar al Glucagón , Mitofagia , Transducción de Señal , Calcificación Vascular , Animales , Mitofagia/efectos de los fármacos , Calcificación Vascular/etiología , Calcificación Vascular/metabolismo , Calcificación Vascular/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Ratones , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Masculino , Proteínas Quinasas Activadas por AMP/metabolismo , Humanos , Exenatida/farmacología , Exenatida/uso terapéutico , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
2.
Gut Microbes ; 16(1): 2347725, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722028

RESUMEN

The gut commensal bacteria Christensenellaceae species are negatively associated with many metabolic diseases, and have been seen as promising next-generation probiotics. However, the cultured Christensenellaceae strain resources were limited, and their beneficial mechanisms for improving metabolic diseases have yet to be explored. In this study, we developed a method that enabled the enrichment and cultivation of Christensenellaceae strains from fecal samples. Using this method, a collection of Christensenellaceae Gut Microbial Biobank (ChrisGMB) was established, composed of 87 strains and genomes that represent 14 species of 8 genera. Seven species were first described and the cultured Christensenellaceae resources have been significantly expanded at species and strain levels. Christensenella strains exerted different abilities in utilization of various complex polysaccharides and other carbon sources, exhibited host-adaptation capabilities such as acid tolerance and bile tolerance, produced a wide range of volatile probiotic metabolites and secondary bile acids. Cohort analyses demonstrated that Christensenellaceae and Christensenella were prevalent in various cohorts and the abundances were significantly reduced in T2D and OB cohorts. At species level, Christensenellaceae showed different changes among healthy and disease cohorts. C. faecalis, F. tenuis, L. tenuis, and Guo. tenuis significantly reduced in all the metabolic disease cohorts. The relative abundances of C. minuta, C. hongkongensis and C. massiliensis showed no significant change in NAFLD and ACVD. and C. tenuis and C. acetigenes showed no significant change in ACVD, and Q. tenuis and Geh. tenuis showed no significant change in NAFLD, when compared with the HC cohort. So far as we know, this is the largest collection of cultured resource and first exploration of Christensenellaceae prevalences and abundances at species level.


Asunto(s)
Heces , Microbioma Gastrointestinal , Humanos , Heces/microbiología , Clostridiales/genética , Clostridiales/metabolismo , Clostridiales/aislamiento & purificación , Clostridiales/clasificación , Probióticos/metabolismo , Metabolómica , Genómica , Masculino , Filogenia , Femenino , Genoma Bacteriano
3.
Genes Chromosomes Cancer ; 63(5): e23243, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747337

RESUMEN

Breast cancer susceptibility 1/2 (BRCA1/2) genes play a crucial role in DNA damage repair, yet mutations in these genes increase the susceptibility to tumorigenesis. Exploiting the synthetic lethality mechanism between BRCA1/2 mutations and poly(ADP-ribose) polymerase (PARP) inhibition has led to the development and clinical approval of PARP inhibitor (PARPi), representing a milestone in targeted therapy for BRCA1/2 mutant tumors. This approach has paved the way for leveraging synthetic lethality in tumor treatment strategies. Despite the initial success of PARPis, resistance to these agents diminishes their efficacy in BRCA1/2-mutant tumors. Investigations into PARPi resistance have identified replication fork stability and homologous recombination repair as key factors sensitive to PARPis. Additionally, studies suggest that replication gaps may also confer sensitivity to PARPis. Moreover, emerging evidence indicates a correlation between PARPi resistance and cisplatin resistance, suggesting a potential overlap in the mechanisms underlying resistance to both agents. Given these findings, it is imperative to explore the interplay between replication gaps and PARPi resistance, particularly in the context of platinum resistance. Understanding the impact of replication gaps on PARPi resistance may offer insights into novel therapeutic strategies to overcome resistance mechanisms and enhance the efficacy of targeted therapies in BRCA1/2-mutant tumors.


Asunto(s)
Proteína BRCA1 , Proteína BRCA2 , Resistencia a Antineoplásicos , Mutación , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Resistencia a Antineoplásicos/genética , Proteína BRCA2/genética , Proteína BRCA1/genética , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Neoplasias/genética , Neoplasias/tratamiento farmacológico
4.
J Hazard Mater ; 472: 134460, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38718505

RESUMEN

Parabens can particularly raise significant concerns regarding the disruption of microbial ecology due to their antimicrobial properties. However, the responses of biofilm bacteria to diverse parabens with different alkyl-chain length remains unclear. Here, theoretical calculations and bioinformatic analysis were performed to decipher the influence of parabens varying alkyl-chain lengths on the biofilm bacteria. Our results showed that the disturbances in bacterial community did not linearly response to the alkyl-chain length of parabens, and propylparaben (PrP), with median chain length, had more severe impact on bacterial community. Despite the fact that paraben lethality linearly increased with chain length, the PrP had a higher chemical reactions potential than parabens with shorter or longer alkyl-chain. The chemical reactions potential was critical in the nonlinear responses of bacterial community to alkyl-chain length of parabens. PrP could impose selective pressure to disturb the bacterial community, because it had a more profound contribution to deterministic assembly process. Furthermore, N-acyl-homoserine lactones was also significantly promoted under PrP exposure, confirming that PrP could affect the bacterial community by influencing the quorum-sensing system. Overall, our study reveals the nonlinear responses of bacterial communities to the alkyl-chain lengths of parabens and provides insightful perspectives for the better regulation of parabens. ENVIRONMENTAL IMPLICATION: Parabens are recognized as emerging organic pollutants, which specially raise great concerns due to their antimicrobial properties disturbing microbial ecology. However, few study have addressed the relationship between bacterial community responses and the molecular structural features of parabens with different alkyl-chain length. This investigation revealed nonlinear responses of the bacterial community to the alkyl-chain length of parabens through DFT calculation and bioinformatic analysis and identified the critical roles of chemical reactions potential in nonlinear responses of bacterial community. Our results benefit the precise evaluation of ecological hazards posed by parabens and provide useful insights for better regulation of parabens.

5.
J Med Chem ; 67(9): 7470-7486, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38690769

RESUMEN

We assessed factors that determine the tissue-specific bioactivation of ProTide prodrugs by comparing the disposition and activation of remdesivir (RDV), its methylpropyl and isopropyl ester analogues (MeRDV and IsoRDV, respectively), the oral prodrug GS-621763, and the parent nucleotide GS-441524 (Nuc). RDV and MeRDV yielded more active metabolite remdesivir-triphosphate (RDV-TP) than IsoRDV, GS-621763, and Nuc in human lung cell models due to superior cell permeability and higher susceptivity to cathepsin A. Intravenous administration to mice showed that RDV and MeRDV delivered significantly more RDV-TP to the lung than other compounds. Nevertheless, all four ester prodrugs exhibited very low oral bioavailability (<2%), with Nuc being the predominant metabolite in blood. In conclusion, ProTides prodrugs, such as RDV and MeRDV, are more efficient in delivering active metabolites to the lung than Nuc, driven by high cell permeability and susceptivity to cathepsin A. Optimizing ProTides' ester structures is an effective strategy for enhancing prodrug activation in the lung.


Asunto(s)
Adenosina/análogos & derivados , Antivirales , Catepsina A , Pulmón , Profármacos , Profármacos/química , Profármacos/metabolismo , Profármacos/farmacocinética , Profármacos/farmacología , Animales , Ratones , Antivirales/farmacocinética , Antivirales/farmacología , Antivirales/química , Antivirales/metabolismo , Humanos , Catepsina A/metabolismo , Pulmón/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacocinética , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/química , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/química , Alanina/farmacocinética , Alanina/metabolismo , Alanina/farmacología , Permeabilidad , ProTides
6.
Expert Opin Drug Metab Toxicol ; : 1-21, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38706437

RESUMEN

INTRODUCTION: Carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) are among the most abundant hydrolases in humans, catalyzing the metabolism of numerous clinically important medications, such as methylphenidate and clopidogrel. The large interindividual variability in the expression and activity of CES1 and CES2 affects the pharmacokinetics (PK) and pharmacodynamics (PD) of substrate drugs. AREAS COVERED: This review provides an up-to-date overview of CES expression and activity regulations and examines their impact on the PK and PD of CES substrate drugs. The literature search was conducted on PubMed from inception to January 2024. EXPERT OPINION: Current research revealed modest associations of CES genetic polymorphisms with drug exposure and response. Beyond genomic polymorphisms, transcriptional and posttranslational regulations can also significantly affect CES expression and activity and consequently alter PK and PD. Recent advances in plasma biomarkers of drug-metabolizing enzymes encourage the research of plasma protein and metabolite biomarkers for CES1 and CES2, which could lead to the establishment of precision pharmacotherapy regimens for drugs metabolized by CESs. Moreover, our understanding of tissue-specific expression and substrate selectivity of CES1 and CES2 has shed light on improving the design of CES1- and CES2-activated prodrugs.

7.
Environ Int ; 187: 108710, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38701644

RESUMEN

Exposure to persistent organic pollutants (POPs), such as dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCBs), has historically been linked to population collapses in wildlife. Despite international regulations, these legacy chemicals are still currently detected in women of reproductive age, and their levels correlate with reduced ovarian reserve, longer time-to-pregnancy, and higher risk of infertility. However, the specific modes of action underlying these associations remain unclear. Here, we examined the effects of five commonly occurring POPs - hexachlorobenzene (HCB), p,p'-dichlorodiphenyldichloroethylene (DDE), 2,3,3',4,4',5-hexachlorobiphenyl (PCB156), 2,2',3,4,4',5,5'-heptachlorobiphenyl (PCB180), perfluorooctane sulfonate (PFOS) - and their mixture on human ovaries in vitro. We exposed human ovarian cancer cell lines COV434, KGN, and PA1 as well as primary ovarian cells for 24 h, and ovarian tissue containing unilaminar follicles for 6 days. RNA-sequencing of samples exposed to concentrations covering epidemiologically relevant levels revealed significant gene expression changes related to central energy metabolism in the exposed cells, indicating glycolysis, oxidative phosphorylation, fatty acid metabolism, and reactive oxygen species as potential shared targets of POP exposures in ovarian cells. Alpha-enolase (ENO1), lactate dehydrogenase A (LDHA), cytochrome C oxidase subunit 4I1 (COX4I1), ATP synthase F1 subunit alpha (ATP5A), and glutathione peroxidase 4 (GPX4) were validated as targets through qPCR in additional cell culture experiments in KGN. In ovarian tissue cultures, we observed significant effects of exposure on follicle growth and atresia as well as protein expression. All POP exposures, except PCB180, decreased unilaminar follicle proportion and increased follicle atresia. Immunostaining confirmed altered expression of LDHA, ATP5A, and GPX4 in the exposed tissues. Moreover, POP exposures modified ATP production in KGN and tissue culture. In conclusion, our results demonstrate the disruption of cellular energy metabolism as a novel mode of action underlying POP-mediated interference of follicle growth in human ovaries.

8.
Adv Mater ; : e2404815, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719211

RESUMEN

The solid electrolyte interphase (SEI) with lithium fluoride (LiF) is critical to the performance of lithium metal batteries (LMBs) due to its high stability and mechanical properties. However, the low Li ion conductivity of LiF impedes the rapid diffusion of Li ions in the SEI, which leads to localized Li ion oversaturation dendritic deposition and hinders the practical applications of LMBs at high-current regions (>3 C). To address this issue, a fluorophosphated SEI rich with fast ion-diffusing inorganic grain boundaries (LiF/Li3P) is introduced. By utilizing a sol electrolyte that contains highly dispersed porous LiF nanoparticles modified with phosphorus-containing functional groups, a fluorophosphated SEI is constructed and the presence of electrochemically active Li within these fast ion-diffusing grain boundaries (GBs-Li) that are non-nucleated is demonstrated, ensuring the stability of the Li || NCM811 cell for over 1000 cycles at fast-charging rates of 5 C (11 mA cm-2). Additionally, a practical, long cycling, and intrinsically safe LMB pouch cell with high energy density (400 Wh kg-1) is fabricated. The work reveals how SEI components and structure design can enable fast-charging LMBs.

9.
Bioresour Technol ; 401: 130727, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643952

RESUMEN

Understanding the different biological responses to salinity gradient between coexisting biofilm and flocs is crucial for regulating the ecological function of biofilm system. This study investigated performance, dynamics, and community assembly of biofilm system under 3 %-7% salinity gradient. The removal efficiency of NH4+-N remained stable and exceeded 93 % at 3 %-6% salinity, but decreased to below 80 % at 7 % salinity. The elevated salinity promoted the synthesis of extracellular polymer substrates, inhibited microbial respiration, and significantly regulated the microbial community structure. Compared to flocs, biofilm exhibited greater species diversity and richer Nitrosomonas. It was found diffusion limitations dominated the microbial community assembly under the salinity gradient. And microbial network revealed positive interactions predominated the microbial relationships, designating norank Spirochaetaceae, unclassified Micrococcales, Corynebacterium, and Pusillimonas as keystone species. Moreover, distinct salinity preferences in nitrogen transformation-related genes were observed. This study can improve the understanding to the regulation of biofilm systems to salt stresses.


Asunto(s)
Biopelículas , Reactores Biológicos , Salinidad , Reactores Biológicos/microbiología , Nitrógeno , Bacterias/metabolismo , Bacterias/genética
10.
Int J Biol Macromol ; 267(Pt 2): 131484, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599421

RESUMEN

Adopting effective and efficient techniques for the treatment of heavy metal pollution in water bodies plays an important role in guaranteeing the quality of water and the sustainable development of water resources. In this study, GO, MMT and SA were used as raw materials to compare the adsorption behaviors of three alginate-based adsorbents crosslinked with different valence metal ions (Ca2+, Fe3+ and Zr4+) on Cu(II). The aerogels were based on sodium alginate as the matrix material with unique slit-shaped pore structures formed by stacking effect of sheets and chemical bonding. It was found that the pore structures of the aerogels were denser and more orderly with the increase of the valence states of the crosslinked ions, and the affinity for Cu(II) in planar configuration was stronger. The Zr4+-GMSA aerogel had the maximum adsorption capacity of 126.68 mg/g and the Kd of Cu(II) was up to 50.80 L/g, which exhibited good preferential adsorption performance. The adsorption mechanism of Mn+-GMSA aerogels on Cu(II) was mainly ionic exchange, surface complexation and physical adsorption, which was explored by combining XPS and EDS characterizations of Mn+-GMSA before and after adsorption. This scheme can provide valuable and meaningful contribution to realize the selective recovery of Cu(II).


Asunto(s)
Alginatos , Cobre , Contaminantes Químicos del Agua , Purificación del Agua , Cobre/química , Adsorción , Alginatos/química , Porosidad , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Iones/química , Cinética , Geles/química , Concentración de Iones de Hidrógeno
11.
Artículo en Inglés | MEDLINE | ID: mdl-38625449

RESUMEN

PURPOSE: The study aims to compare morphology and location of crystalline lens between acute acquired concomitant esotropia (AACE) patients and control subjects, both before and after cycloplegia. METHODS: This is a prospective and observational clinical study. Morphological and locational parameters of the crystalline lens in 53 AACE patients and 32 control subjects were assessed before and after cycloplegia using CASIA2 system, which represents the latest swept-source anterior segment optical coherence tomography. Cycloplegic refraction was recorded by administering 1% atropine in patients younger than 12 years and 1% cyclopentolate in those > 12 years old. Morphological parameters included anterior radius of curvature (ARC), posterior radius of curvature (PRC), lens thickness (LTH), and equivalent diameter of lens (LED). Locational parameters comprised lens decentration (LD) and lens tilt (LT). Comparison of these parameters before and after cycloplegia were conducted between AACE and controls. Additionally, the study analyzed and compared the changes in these parameter post-cycloplegia. RESULTS: Our findings suggest no significant difference in morphological parameters including ARC, PRC, LTH and LED between AACE patients and controls before or after cycloplegia. However, 2D-modeling data in the 0° meridian revealed that variation post-cycloplegia of LD (lens shift) in right eyes was different in AACE patients, measuring - 0.03(0.08) [median(interquartile range)] which was significantly distinct from the control group, exhibiting a measurement of 0.01(0.06) (z = - 2.373, p = 0.018). In left eyes, a similar trend was observed with lens shift in the 0° meridian being 0.02(0.06) in AACE, significantly differing from control group's measurement of - 0.02(0.08) (z = - 2.809, p = 0.005). Further, correlation analysis revealed that larger temporal shift of lens was associated with greater changes in ARC (r = 0.294, p = 0.006) and LTH (r = - 0.230, p = 0.031). CONCLUSIONS: The morphological features of the crystalline lens were similar in AACE patients and controls; however, the change of lens location by cycloplegia was observed only in AACE patients, suggesting an association with excessive accommodation.

12.
Clin Epigenetics ; 16(1): 57, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659084

RESUMEN

BACKGROUND: Heart failure (HF) is a disease that poses a serious threat to individual health, and DNA methylation is an important mechanism in epigenetics, and its role in the occurrence and development of the disease has attracted more and more attention. The aim of this study was to evaluate the link between iodothyronine deiodinase 3 promoter region fragment FA27 (DIO3-FA27) methylation levels, biochemical indices, and HF. RESULTS: The methylation levels of DIO3-FA27_CpG_11.12 and DIO3-FA27_CpG_23.24 significantly differed in HF patients with different degrees. Multivariate logistic regression analysis indicated that the relative HF risk in the third and fourth quartiles of activated partial thromboplastin time and fibrin degradation products. The results of the restricted cubic spline model showed that the methylation levels of DIO3-FA 27_CpG_11.12 and DIO3-FA 27_CpG_23.24 were associated with coagulation indicators, liver function, renal function, and blood routine. CONCLUSIONS: Based on the differential analysis of CpG methylation levels based on DIO3-FA27, it was found that biochemical indicators combined with DIO3-FA27 promoter DNA methylation levels could increase the risk of worsening the severity classification of HF patients, which provided a solid foundation and new insights for the study of epigenetic regulation mechanisms in patients with HF.


Asunto(s)
Metilación de ADN , Progresión de la Enfermedad , Epigénesis Genética , Insuficiencia Cardíaca , Yoduro Peroxidasa , Regiones Promotoras Genéticas , Humanos , Insuficiencia Cardíaca/genética , Metilación de ADN/genética , Masculino , Femenino , Yoduro Peroxidasa/genética , Persona de Mediana Edad , Anciano , Epigénesis Genética/genética , Islas de CpG/genética
13.
Open Med (Wars) ; 19(1): 20240895, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584840

RESUMEN

Backgrounds: Glioma is a highly malignant brain tumor with a grim prognosis. Genetic factors play a role in glioma development. While some susceptibility loci associated with glioma have been identified, the risk loci associated with prognosis have received less attention. This study aims to identify risk loci associated with glioma prognosis and establish a prognostic prediction model for glioma patients in the Chinese Han population. Methods: A genome-wide association study (GWAS) was conducted to identify risk loci in 484 adult patients with glioma. Cox regression analysis was performed to assess the association between GWAS-risk loci and overall survival as well as progression-free survival in glioma. The prognostic model was constructed using LASSO Cox regression analysis and multivariate Cox regression analysis. The nomogram model was constructed based on the single nucleotide polymorphism (SNP) classifier and clinical indicators, enabling the prediction of survival rates at 1-year, 2-year, and 3-year intervals. Additionally, the receiver operator characteristic (ROC) curve was employed to evaluate the prediction value of the nomogram. Finally, functional enrichment and tumor-infiltrating immune analyses were conducted to examine the biological functions of the associated genes. Results: Our study found suggestive evidence that a total of 57 SNPs were correlated with glioma prognosis (p < 5 × 10-5). Subsequently, we identified 25 SNPs with the most significant impact on glioma prognosis and developed a prognostic model based on these SNPs. The 25 SNP-based classifier and clinical factors (including age, gender, surgery, and chemotherapy) were identified as independent prognostic risk factors. Subsequently, we constructed a prognostic nomogram based on independent prognostic factors to predict individualized survival. ROC analyses further showed that the prediction accuracy of the nomogram (AUC = 0.956) comprising the 25 SNP-based classifier and clinical factors was significantly superior to that of each individual variable. Conclusion: We identified a SNP classifier and clinical indicators that can predict the prognosis of glioma patients and established a prognostic prediction model in the Chinese Han population. This study offers valuable insights for clinical practice, enabling improved evaluation of patients' prognosis and informing treatment options.

14.
Asian J Androl ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38563741

RESUMEN

ABSTRACT: The second-to-fourth digit (2D:4D) ratio is thought to be associated with prenatal androgen exposure. However, the relationship between the 2D:4D ratio and hypospadias is poorly understood, and its molecular mechanism is not clear. In this study, by analyzing the hand digit length of 142 boys with hypospadias (23 distal, 68 middle, and 51 proximal) and 196 controls enrolled in Shanghai Children's Hospital (Shanghai, China) from December 2020 to December 2021, we found that the 2D:4D ratio was significantly increased in boys with hypospadias (P < 0.001) and it was positively correlated with the severity of the hypospadias. This was further verified by the comparison of control mice and prenatal low testosterone mice model obtained by knocking out the risk gene (dynein axonemal heavy chain 8 [DNAH8]) associated with hypospadias. Furthermore, the discrepancy was mainly caused by a shift in 4D. Proteomic characterization of a mouse model validated that low testosterone levels during pregnancy can impair the growth and development of 4D. Comprehensive mechanistic explorations revealed that during the androgen-sensitive window, the downregulation of the androgen receptor (AR) caused by low testosterone levels, as well as the suppressed expression of chondrocyte proliferation-related genes such as Wnt family member 5a (Wnt5a), Wnt5b, Smad family member 2 (Smad2), and Smad3; mitochondrial function-related genes in cartilage such as AMP-activated protein kinase (AMPK) and nuclear respiratory factor 1 (Nrf-1); and vascular development-related genes such as myosin light chain (MLC), notch receptor 3 (Notch3), and sphingosine kinase 1 (Sphk1), are responsible for the limitation of 4D growth, which results in a higher 2D:4D ratio in boys with hypospadias via decreased endochondral ossification. This study indicates that the ratio of 2D:4D is a risk marker of hypospadias and provides a potential molecular mechanism.

15.
Biomed Pharmacother ; 174: 116623, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643545

RESUMEN

Postpartum depression (PPD) has a significant impact on the physical and mental health of mothers, potentially leading to symptoms such as low mood, fatigue, and decreased appetite. It may also affect the healthy growth of the infant. The onset of PPD is closely related to abnormalities in inflammation and the immune system. PPD patients exhibit abnormalities in the proportion of peripheral blood immune cells, along with an increase in pro-inflammatory cytokines. Excessive pro-inflammatory cytokines in peripheral blood can disrupt the blood-brain barrier (BBB) by activating astrocytes and reducing transendothelial electrical resistance (TEER), allowing peripheral immune cells or cytokines to enter the brain and trigger inflammation, ultimately leading to the onset of depression. In addition, PPD lacks safe and effective treatment medications. In this study, we collected peripheral blood from both healthy postpartum women and those with PPD, conducted single cell RNA sequencing (scRNA-seq), and used an in-house analytical tool scSTAR to reveal that PPD patients exhibit elevated proportions of peripheral blood cDC2 and Proliferation B cells, which are significantly correlated with IL-1ß. Additionally, animal experiments were designed to validate that 919 granules can improve PPD by modulating the levels of peripheral blood IL-1ß, providing a potential therapeutic mechanism for PPD treatment.


Asunto(s)
Depresión Posparto , Interleucina-1beta , Animales , Femenino , Humanos , Masculino , Ratones , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Depresión Posparto/sangre , Depresión Posparto/tratamiento farmacológico , Interleucina-1beta/sangre , Adulto Joven , Adulto
16.
Nat Neurosci ; 27(5): 1014-1018, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467902

RESUMEN

Large-scale imaging of neuronal activities is crucial for understanding brain functions. However, it is challenging to analyze large-scale imaging data in real time, preventing closed-loop investigation of neural circuitry. Here we develop a real-time analysis system with a field programmable gate array-graphics processing unit design for an up to 500-megabyte-per-second image stream. Adapted to whole-brain imaging of awake larval zebrafish, the system timely extracts activity from up to 100,000 neurons and enables closed-loop perturbations of neural dynamics.


Asunto(s)
Encéfalo , Neuronas , Pez Cebra , Animales , Neuronas/fisiología , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Larva , Neuroimagen/métodos , Sistemas de Computación
17.
Ying Yong Sheng Tai Xue Bao ; 35(1): 212-218, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38511458

RESUMEN

We investigated the effects and mechanisms of nitrogen additions (0, 1, 2, 4, 8, 16, 24, 32 g N·m-2·a-1) on contents of anion and cation in rhizosphere soil, bulk soil, and mixed rhizosphere and bulk soil in the heavily salinized grassland in the agro-pastoral ecotone of North China. The results showed that pH of rhizosphere, mixed and bulk soils decreased significantly with the increases of nitrogen addition levels. Moreover, pH of three soil types under the 32 g N·m-2·a-1 treatment decreased by 1.2, 0.9, and 0.6, respectively, while pH of rhizosphere soil decreased by 0.44 compared with the bulk soil. Na+ content of rhizosphere, mixed and bulk soils significantly decreased, while the NO3- content significantly increased. The proportion of Na+ content in total soluble salt content in rhizosphere soil decreased by 14% and that in bulk soil decreased by 12% after the 32 g N·m-2·a-1 addition. NO3- content increased by 29% in rhizosphere soil and by 26% in bulk soil. There was significant negative correlation between pH and NO3- content, and significant positive correlation between pH and Na+ content. The total soluble salt content of rhizosphere soil under the 32 g N·m-2·a-1 treatment was significantly reduced by 31.5%. Collectedly, nitrogen deposition could reduce soil pH and total soluble salt content of rhizosphere soil and alleviate saline-alkali stress.


Asunto(s)
Rizosfera , Suelo , Suelo/química , Pradera , Nitrógeno/análisis , Aniones , Cationes , China , Microbiología del Suelo
18.
Neuropharmacology ; 249: 109893, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428482

RESUMEN

Hyperalgesia resulting from sleep deprivation (SD) poses a significant a global public health challenge with limited treatment options. The nucleus accumbens (NAc) plays a crucial role in the modulation of pain and sleep, with its activity regulated by two distinct types of medium spiny neurons (MSNs) expressing dopamine 1 or dopamine 2 (D1-or D2) receptors (referred to as D1-MSNs and D2-MSNs, respectively). However, the specific involvement of the NAc in SD-induced hyperalgesia remains uncertain. Cannabidiol (CBD), a nonpsychoactive phytocannabinoid, has demonstrated analgesic effects in clinical and preclinical studies. Nevertheless, its potency in addressing this particular issue remains to be determined. Here, we report that SD induced a pronounced pronociceptive effect attributed to the heightened intrinsic excitability of D2-MSNs within the NAc in Male C57BL/6N mice. CBD (30 mg/kg, i.p.) exhibited an anti-hyperalgesic effect. CBD significantly improved the thresholds for thermal and mechanical pain and increased wakefulness by reducing delta power. Additionally, CBD inhibited the intrinsic excitability of D2-MSNs both in vitro and in vivo. Bilateral microinjection of the selective D2 receptor antagonist raclopride into the NAc partially reversed the antinociceptive effect of CBD. Thus, these findings strongly suggested that SD activates NAc D2-MSNs, contributing heightened to pain sensitivity. CBD exhibits antinociceptive effects by activating D2R, thereby inhibiting the excitability of D2-MSNs and promoting wakefulness under SD conditions.


Asunto(s)
Cannabidiol , Ratones , Animales , Masculino , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Privación de Sueño/complicaciones , Privación de Sueño/tratamiento farmacológico , Dopamina/farmacología , Ratones Endogámicos C57BL , Receptores de Dopamina D2/metabolismo , Núcleo Accumbens , Dolor , Receptores de Dopamina D1/metabolismo , Analgésicos/farmacología , Analgésicos/uso terapéutico , Ratones Transgénicos
19.
Gait Posture ; 110: 1-9, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38458049

RESUMEN

BACKGROUND: Backward walking is an indispensable component of activities of daily living. The backward walk test has been used to assess balance, mobility, and fall risk in different populations. This systematic review aimed to identify and synthesize measurement properties of the backward walk test in people with balance and mobility deficits. METHODS: Three bibliographic databases, PubMed, Embase, and Scopus, were searched on June 18th, 2023. Cross-sectional or cohort studies assessing the measurement properties (reliability, validity, responsiveness) of the backward walk test were included. The COSMIN risk of bias checklist was used for methodological quality assessment. Study selection, data extraction, and quality assessment were completed by two reviewers independently and in duplicate. RESULTS: A total of 786 records were identified from three databases. Fourteen studies published from 2019 to 2023 with a total of 853 participants were included. Two studies were rated inadequate in quality assessment, all other studies demonstrated adequate to very good quality. The participants population included patients with cerebral palsy, stroke, multiple sclerosis, Parkinson's disease, fibromyalgia, hip and knee arthroplasty, dementia, and community-dwelling older adults. Good interrater and intrarater reliability, and moderate to good concurrent validity of the backward walk test were demonstrated. SIGNIFICANCE: The review demonstrates that the backward walk test appears to be a valid and reliable tool in different patient populations. The 3-meter backward walk time and 3-meter backward walk speed can be used as outcome measures in clinical practice to assess balance and mobility and track progress throughout the course of physical rehabilitation. Future studies with a prospective cohort design are required to provide information regarding the predictive validity of the backward walk test for fall risk assessment.


Asunto(s)
Limitación de la Movilidad , Equilibrio Postural , Prueba de Paso , Humanos , Equilibrio Postural/fisiología , Reproducibilidad de los Resultados , Accidentes por Caídas
20.
ACS Omega ; 9(10): 11998-12005, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38496964

RESUMEN

Chemotherapy is widely recognized as an important approach for the treatment of cholangiocarcinoma. Gemcitabine (GEM) has been considered a first-line drug for treating cholangiocarcinoma due to its ability to effectively inhibit the proliferation, migration, and invasion of liver cancer cells. However, the systemic toxicity, premature degradation, and lack of tumor-targeting properties of GEM limit its application in cholangiocarcinoma chemotherapy. Additionally, precise targeted delivery of GEM is necessary to align with the current concept of precision medicine. In this study, considering the overexpression of hyaluronic acid (HA) receptors (CD44) on cholangiocarcinoma cells, we designed GEM@ZIF-67-HA NPs by loading GEM onto ZIF-67 and modifying its surface with HA. The structure, size, morphology, and elemental composition of GEM@ZIF-67-HA were analyzed using transmission electron microscopy, Fourier transform infrared spectroscopy, ζ-potential, and isothermal adsorption. Cell toxicity experiments demonstrated that GEM@ZIF-67-HA NPs not only reduced cytotoxicity to normal cells but also effectively inhibited the viability of two types of cholangiocarcinoma tumor cells. In a subcutaneous tumor model, GEM@ZIF-67-HA significantly suppressed tumor growth. The tumor-targeting and controllable properties of GEM@ZIF-67-HA NPs hold promise for further development in the strategy of precise targeted therapy for cholangiocarcinoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...