Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2406936, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136142

RESUMEN

Despite significant progress in therapy, there remains a lack of substantial evidence regarding the molecular factors that lead to renal fibrosis. Neuraminidase 4 (NEU4), an enzyme that removes sialic acids from glycoconjugates, has an unclear role in chronic progressive fibrosis. Here, this study finds that NEU4 expression is markedly upregulated in mouse fibrotic kidneys induced by folic acid or unilateral ureter obstruction, and this elevation is observed in patients with renal fibrosis. NEU4 knockdown specifically in the kidney attenuates the epithelial-to-mesenchymal transition, reduces the production of pro-fibrotic cytokines, and decreases cellular senescence in male mice. Conversely, NEU4 overexpression exacerbates the progression of renal fibrosis. Mechanistically, NEU4254-388aa interacts with Yes-associated protein (YAP) at WW2 domain (231-263aa), promoting its nucleus translocation and activation of target genes, thereby contributing to renal fibrosis. 3,5,6,7,8,3',4'-Heptamethoxyflavone, a natural compound, is identified as a novel NEU4 inhibitor, effectively protecting mice from renal fibrosis in a NEU4-dependent manner. Collectively, the findings suggest that NEU4 may represent a promising therapeutic target for kidney fibrosis.

2.
Chin Med ; 19(1): 67, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720376

RESUMEN

BACKGROUND: Thesium chinense Turcz. (Named as Bai Rui Cao in Chinese) and its preparations (e.g., Bairui Granules) have been used to treat inflammatory diseases, such as acute mastitis, lobar pneumonia, tonsillitis, coronavirus disease 2019 (COVID-19), and upper respiratory tract infection. However, the material basis, pharmacological efficiency, and safety have not been illustrated. METHODS: Anti-inflammatory activity-guided isolation of constituents has been performed using multiple column chromatography, and their structures were elucidated by NMR spectroscopy and ECD calculations. The inhibitory effects on lung inflammation and safety of the crude ethanol extract (CE), Bairui Granules (BG), and the purified active constituents were evaluated using lipopolysaccharide (LPS)-stimulated acute lung inflammation (ALI) mice model or normal mice. RESULTS: Seven new compounds (1-7) and fifty-six known compounds (8-63) were isolated from T. chinense, and fifty-four were reported from this plant for the first time. The new flavonoid glycosides 1-2, new fatty acids 4-5, new alkaloid 7 as well as the known constituents including flavonoid aglycones 8-11, lignans 46-54, alkaloids 34 and 45, coumarins 57, phenylpropionic acids 27, and simple aromatic compounds 39, 44 and 58 exhibited anti-inflammatory activity. Network pharmacology analysis indicated that anti-inflammation of T. chinense was attributed to flavonoids and alkaloids by regulating inflammation-related proteins (e.g., TNF, NF-κB, TGF-ß). Furthermore, constituents of T. chinense including kaempferol-3-O-glucorhamnoside (KN, also named as Bairuisu I, 19), astragalin (AG, Bairuisu II, 12), and kaempferol (KF, Bairuisu III, 8), as well as CE and BG could alleviate lung inflammation caused by LPS in mice by preventing neutrophils infiltration and the expression of the genes for pro-inflammatory cytokines NLRP3, caspase-1, IL-1ß, and COX-2. After a 28-day subacute toxicity test, BG at doses of 4.875 g/kg and 9.750 g/kg (equivalent to onefold and twofold the clinically recommended dose) and CE at a dose of 11.138 g/kg (equivalent to fourfold the clinical dose of BG) were found to be safe and non-toxic. CONCLUSIONS: The discovery of sixty-three constituents comprehensively illustrated the material basis of T. chinense. T. chinense and Bairui Granules could alleviate lung inflammation by regulating inflammation-related proteins and no toxicity was observed under the twofold of clinically used doses.

3.
J AOAC Int ; 106(5): 1295-1304, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37243686

RESUMEN

BACKGROUND: Platycladus orientalis leaves (POL), as the source of the traditional Chinese medicine (TCM) Platycladi Cacumen, has frequently been found to be misused with five adulterants including Chamaecyparis obtusa leaves (COL), Cupressus funebris leaves (CFL), Juniperus virginiana leaves (JVL), Sabina chinensis leaves (SCL), and Juniperus formosana leaves (JFL). OBJECTIVE: The purpose of this study was to distinguish POL (fresh leaves) from its five adulterants (fresh leaves). METHODS: The micromorphological features in terms of transection and microscopic characteristics of POL and adulterants were captured and compared using the an microscope. Both HPLC and TLC methods for the simultaneous determination of six bioactive flavonoids (myricitrin, isoquercitrin, quercitrin, amentoflavone, afzelin, and hinokiflavone) have been developed. RESULTS: There were significant differences in microscopic features of transverse section and powders. The TLC results suggested that the spots of myricitrin in POL were more obvious than those in the five adulterants. The contents of myricitrin and quercitrin, or the total content of flavonoids in POL, determined by HPLC, were significantly higher than those in the adulterants. CONCLUSION: POL was successfully distinguished from its five adulterants by the comparison of morphology, microscopic characteristics, and chemical profiles. HIGHLIGHTS: This research provides a comprehensive morphology, microscopic identification, TLC, and HPLC analysis for authenticating POL and its five adulterants.


Asunto(s)
Cupressaceae , Medicamentos Herbarios Chinos , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Cupressaceae/química , Medicamentos Herbarios Chinos/análisis , Medicina Tradicional China
4.
J Food Drug Anal ; 30(1): 77-87, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35647727

RESUMEN

Since the combinatorial components responsible for the antihyperlipidemic activity of Citrus reticulata 'Chachi' (CRC) peels remains unclear, we herein developed a bioactive equivalence oriented feedback screening method to discover the bioactive equivalent combinatorial components (BECCs) from CRC peels. Using palmitic acid (PA)-stimulated hepatocyte model, a combination of 5 polymethoxyflavones (PMFs) including tangeretin, sinensetin, nobiletin, 5,7,8,4'-tetramethoxyflavone and 3,5,6,7,8,3',4'-heptamethoxyflavone was identified to be responsible for the antihyperlipidemic effect of CRC peels. Via evaluation of combination effect by combination index (CI), these 5 PMFs were found to take effect via a synergistic mode. Our data indicated that the antihyperlipidemic mechanism of PMF combination was associated with the inhibition of fatty acid and cholesterol synthesis, and inflammation. Also, the PMF combination exhibited robust antihyperlipidemic effects in HFD-fed rats in vivo. Our study offers evidence-based data to uncover the pharmacological effect of CRC peels.


Asunto(s)
Citrus , Animales , Hipolipemiantes/farmacología , Extractos Vegetales/farmacología , Ratas
5.
J Sep Sci ; 45(14): 2591-2602, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35593082

RESUMEN

In this work, the hypoglycemic components in Platycladi Cacumen, an essential traditional Chinese medicine, were evaluated by combining phytochemical investigation, spectrum-effect relationship analysis, and chemometric methods. The phytochemical studies on Platycladi Cacumen extract lead to the isolation of 21 potential bioactive compounds. The chromatographic fingerprints of Platycladi Cacumen samples were established by high-performance liquid chromatography. The hypoglycemic effects of Platycladi Cacumen samples were further evaluated by inhibition of α-glucosidase and detected by the high-performance liquid chromatography method. The spectrum-effect relationship study by bivariate correlations analysis and orthogonal partial least squares regression revealed that myricitrin (P9), quercitrin (P13), afzelin (P18), and amentoflavone (P24) were more relevant to the α-glucosidase inhibitory activity. The results of α-glucosidase inhibitory activity of 21 isolated compounds and molecular docking studies also indicated these flavonoids had potent α-glucosidase inhibitory activity. Collectively, the present study established the spectrum-effect relationship mode of Platycladi Cacumen and discovered the major hypoglycemic components, which provides a feasible method for screening bioactive components.


Asunto(s)
Medicamentos Herbarios Chinos , Quimiometría , Medicamentos Herbarios Chinos/análisis , Inhibidores de Glicósido Hidrolasas/farmacología , Hipoglucemiantes/farmacología , Simulación del Acoplamiento Molecular , Fitoquímicos , Extractos Vegetales , alfa-Glucosidasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA