Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioinspir Biomim ; 16(6)2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34450611

RESUMEN

Passive wing pitching is a hypothesis in insect flight, and it is used widely by most flapping-wing micro air vehicles (FWMAVs). This study analyses the flight control of hovering model fruit fly and FWMAV with passive pitching wings. The longitudinal and lateral control derivatives are obtained by numerical simulation of the fluid dynamic equations coupled with the torsional spring passive pitching system. In contrast to active pitching wings, some of the control derivatives are remarkably changed by passive pitching wings, such asZΦ(vertical force produced by unit stroke amplitude),Zf(vertical force produced by unit flapping frequency), andMψ0(pitching moment produced by unit rest angle). For example, increasing flapping frequency does not lead to an evident increase in lift and may even have a reverse effect. Therefore, the flight control of FWMAV with passive pitching wings should be treated with caution. For wings pitching passively with a torsional spring at the root, the differential change of the angle of attack in the downstroke and upstroke (αdandαu) could be achieved by modulation of the rest angle alone; however, the equal change inαdandαumay require an otherwise manipulation of the elastic coefficient. Results in this study provide guidelines for the design of FWMAVs in evaluating the effects of different control inputs correctly and formulating a cost-effective control scheme.


Asunto(s)
Vuelo Animal , Alas de Animales , Animales , Fenómenos Biomecánicos , Simulación por Computador , Insectos , Modelos Biológicos
2.
Appl Bionics Biomech ; 2019: 1504310, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31929826

RESUMEN

Reducing weight and increasing lift have been an important goal of using flapping wing micro air vehicles (FWMAVs). However, FWMAVs with mechanisms to limit the angle of attack (α) artificially by active force cannot meet specific requirements. This study applies a bioinspired model that passively imitates insects' pitching wings to resolve this problem. In this bionic passive pitching model, the wing root is equivalent to a torsional spring. α obtained by solving the coupled dynamic equation is similar to that of insects and exhibits a unique characteristic with two oscillated peaks during the middle of the upstroke/downstroke under the interaction of aerodynamic, torsional, and inertial moments. Excess rigidity or flexibility deteriorates the aerodynamic force and efficiency of the passive pitching wing. With appropriate torsional stiffness, passive pitching can maintain a high efficiency while enhancing the average lift by 10% than active pitching. This observation corresponds to a clear enhancement in instantaneous force and a more concentrated leading edge vortex. This phenomenon can be attributed to a vorticity moment whose component in the lift direction grows at a rapid speed. A novel bionic control strategy of this model is also proposed. Similar to the rest angle in insects, the rest angle of the model is adjusted to generate a yaw moment around the wing root without losing lift, which can assist to change the attitude and trajectory of a FWMAV during flight. These findings may guide us to deal with various conditions and requirements of FWMAV designs and applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA