Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Pharm Pharmacol ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39173028

RESUMEN

OBJECTIVES: To unveil the mechanism of the Bufei Huoxue formula (BHF) for chronic obstructive pulmonary disease (COPD) through integrated network pharmacology (NP) and experimental verification. METHODS: LC-MS was first applied to the analysis of both in vitro and in vivo samples from BHF for chemical profiling. Then a ligand library was prepared for NP to reveal the mechanism of BHF against COPD. Finally, verification was performed using an animal model related to the results from the NP. KEY FINDINGS: A ligand library containing 170 compounds from BHF was obtained, while 357 targets related to COPD were filtered to construct a PPI network. GO and KEGG analysis demonstrated that bavachin, paeoniflorin, and demethylation of formononetin were the major compounds for BHF against COPD, which mainly by regulating the PI3K/Akt pathway. The experiments proved that BHF could alleviate lung injury and attenuate the release of TNF-α and IL-6 in the lung and BALF in a dose-dependent manner. Western blot further demonstrated the down-regulated effect of BHF on p-PI3K. CONCLUSION: BHF provides a potent alternative for the treatment of COPD, and the mechanism is probably associated with regulating the PI3K/AKT pathway to alleviate inflammatory injury by bavachin, paeoniflorin, and demethylation of formononetin.

2.
Int J Nanomedicine ; 10: 6395-410, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26504386

RESUMEN

Dimethoxycurcumin (DMC) is an analog of curcumin with superior efficacy in various disease models. Currently, drug delivery system research on DMC is very limited, and it has become a huge challenge to realize further developments and clinical applications. In the present study, a kind of amphiphilic block copolymer, N-t-butoxycarbonyl-phenylalanine terminated monomethoxyl poly (ethylene glycol)-b-poly (ε-caprolactone), or mPEG-PCL-Phe(Boc), was prepared from monomethoxyl poly (ethylene glycol)-b-poly (ε-caprolactone) (mPEG-PCL) with its hydroxyl terminal chemically converted into N-t-butoxycarbonyl-phenylalanine (Boc-Phe). This copolymer was determined to have a fairly low critical micelle concentration (2.56×10(-3) mg/mL) and passive targeting potential to tumor tissue, and thus was applied to develop a polymeric micellar formulation of DMC for the first time. The DMC-loaded micelles prepared by thin-film hydration method had typical shell-core structure, with an average particle size of 17.9±0.4 nm and a polydispersity index of 0.045±0.011. The drug loading capacity and entrapment efficiency were 9.94%±0.15% and 97.22%±0.18%, respectively, indicating a high-affinity interaction between DMC and the copolymer. At a concentration of 2 mg/mL, the reconstituted micelle solution could be maintained for at least 10 days at room temperature, and displayed a low initial burst release followed by a sustained release in vitro. Pharmacokinetic study in rats revealed that in vivo drug exposure of DMC was significantly increased and prolonged by intravenously administering DMC-loaded micelles when compared with the same dose of free DMC dissolved in dimethyl sulfoxide. Furthermore, in vivo distribution results from tumor-bearing nude mice demonstrated that this micellar formulation significantly changed the biodistribution profile of DMC and increased drug accumulation in tumors. Therefore, the polymeric micellar formulation of DMC, based on the amphiphilic block copolymer, mPEG-PCL-Phe(Boc), could provide a desirable method for delivering DMC, especially for applications in cancer therapy.


Asunto(s)
Curcumina/análogos & derivados , Portadores de Fármacos/química , Micelas , Polímeros/química , Polímeros/farmacocinética , Animales , Línea Celular Tumoral , Química Farmacéutica , Curcumina/química , Liberación de Fármacos , Femenino , Humanos , Masculino , Ratones , Ratones Desnudos , Tamaño de la Partícula , Poliésteres/química , Polietilenglicoles/química , Ratas , Temperatura , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA