Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37959684

RESUMEN

Sodium-ion batteries have important application prospects in large-scale energy storage due to their advantages, such as safety, affordability, and abundant resources. Prussian blue analogs (PBAs) have a stable and open framework structure, making them a very promising cathode material. However, high-performance manganese-based Prussian blue cathode materials for sodium-ion batteries still suffer from significant challenges due to several key issues, such as a high number of vacancy defects and a high crystal water content. This article investigates the effects of the Fe-Mn molar ratio, Mn ion concentration, and reaction time on the electrochemical performance of MnHCF during the coprecipitation process. When Fe:Mn = 1:2, c(Mn2+) = 0.02 mol/L, and the reaction time is 12 h, the content of interstitial water molecules in the sample is low, and the Fe(CN)6 defects are few. At 0.1 C, the prepared electrode has a high initial discharge specific capacity (121.9 mAh g-1), and after 100 cycles at 0.2 C, the capacity retention rate is 65% (~76.2 mAh g-1). Meanwhile, the sample electrode exhibits excellent reversibility. The discharge capacity can still be maintained at around 75% when the magnification is restored from 5 C to 0.1 C. The improvement in performance is mainly attributed to two aspects: On the one hand, reducing the Fe(CN)6 defects and crystal water content is conducive to the diffusion and stable structure of N. On the other hand, reducing the reaction rate can significantly delay the crystallization of materials and optimize the nucleation process.

2.
Food Funct ; 14(10): 4905-4920, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37157847

RESUMEN

Atherosclerosis (AS)-induced cardiovascular disease is a leading cause of death worldwide. To date, there is still a lack of effective approaches for AS intervention. Cardamonin (CAD) is a bioactive food component, but its effect on AS is unknown. In this work, CAD was investigated for its effect on AS using low-density lipoprotein receptor knockout mice and tumor necrosis factor-alpha (TNF-α)-stimulated endothelial cells (ECs). After a 12-week intervention, CAD was found to significantly prevent AS formation in the aortic root and aortic tree, reduce the necrotic core area, and inhibit aortic inflammation and oxidative stress. Moreover, CAD quenched TNF-α-provoked inflammation and oxidative stress in ECs. RNA-sequencing identified nuclear factor erythroid-2 related factor 2 (NFE2L2, NRF2)/heme oxidase 1 (HO1) signaling to be drastically activated by CAD. CAD is a known activator of the aryl hydrocarbon receptor (AHR) which is a transcription factor of the NFE2L2 gene. Surprisingly, AHR was not required for CAD's action on the activation of NRF2/HO1 signaling since AHR gene silencing did not reverse this effect. Furthermore, a molecular docking assay showed a strong binding potential of CAD to the Kelch domain of the Kelch-like ECH-associated protein 1 (KEAP1) which sequesters NRF2 in the cytoplasm. Both CAD and the Kelch domain inhibitor Ki696 promoted NRF2 nuclear translocation, whereas the combination of CAD and Ki696 did not yield a greater effect compared with either CAD or Ki696, confirming the interaction of CAD with the Kelch domain. This work provides an experimental basis for CAD as a novel and effective bioactive food component in future AS interventions.


Asunto(s)
Aterosclerosis , Factor 2 Relacionado con NF-E2 , Animales , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Células Endoteliales/metabolismo , Simulación del Acoplamiento Molecular , Estrés Oxidativo , Inflamación/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética
3.
Nutrients ; 14(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36235791

RESUMEN

Diabetes mellitus (DM) impairs the wound healing process, seriously threatening the health of the diabetic population. To date, few effective approaches have been developed for the treatment of diabetic wounds. Krill oil (KO) contains bioactive components that have potent anti-inflammatory and anti-oxidative activities. As prolonged inflammation is a crucial contributor to DM-impaired wound healing, we speculated that the local application of KO would accelerate diabetic wound healing. Therefore, KO was applied to artificially created wounds of type 2 diabetic mice induced by streptozotocin and high-fat diet. The diabetic mice had a delayed wound healing process compared with the non-diabetic control mice, with excessive inflammation, impaired collagen deposition, and depressed neovascularization in the wound area. These effects were dramatically reversed by KO. In vitro, KO blocked the TNF-α-induced macrophage inflammation, fibroblast dysfunction, and endothelial angiogenic impairment. The present study in mice suggests that KO local application could be a viable approach in the management of diabetic wounds.


Asunto(s)
Antiinflamatorios , Diabetes Mellitus Experimental , Euphausiacea , Cicatrización de Heridas , Animales , Antiinflamatorios/farmacología , Colágeno/farmacología , Diabetes Mellitus Experimental/inducido químicamente , Euphausiacea/química , Inflamación/tratamiento farmacológico , Ratones , Piel , Estreptozocina/efectos adversos , Factor de Necrosis Tumoral alfa/metabolismo , Cicatrización de Heridas/efectos de los fármacos
4.
J Agric Food Chem ; 70(32): 9865-9876, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35916281

RESUMEN

Diabetic nephropathy (DN), a severe microvascular complication of diabetes mellitus (DM), results in high mortality due to the lack of effective interventions. The current study investigated the preventive effect of krill oil (KO) on DN using a type 2 DM mouse model induced by streptozotocin and high-fat diet for 24 weeks. The diabetic mice developed albuminuria, mesangial matrix accumulation, glomerular hypertrophy, and fibrosis formation, with an increase in renal proinflammatory, oxidative and profibrotic gene expression. KO significantly prevented these effects but did not improve hyperglycemia and glucose intolerance. In high-glucose-treated mesangial cells (MCs), KO preferably modulated TGF-ß1 signaling as revealed by RNA-sequencing. In TGF-ß1-treated MCs, KO abolished SMAD2/3 phosphorylation and nuclear translocation and activated Smad7 gene expression. The action of KO on the SMADs was confirmed in the diabetic kidneys. Therefore, KO may prevent DN predominantly by suppressing the TGF-ß1 signaling pathway.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Euphausiacea , Animales , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/prevención & control , Ratones , Transducción de Señal , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo
5.
Mediators Inflamm ; 2021: 5110276, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34447287

RESUMEN

Gut microbiota has attracted widespread attention due to its crucial role in disease pathophysiology, including type 2 diabetes mellitus (T2DM). Metabolites and bacterial components of gut microbiota affect the initiation and progression of T2DM by regulating inflammation, immunity, and metabolism. Short-chain fatty acids, secondary bile acid, imidazole propionate, branched-chain amino acids, and lipopolysaccharide are the main molecules related to T2DM. Many studies have investigated the role of gut microbiota in T2DM, particularly those butyrate-producing bacteria. Increasing evidence has demonstrated that fecal microbiota transplantation and probiotic capsules are useful strategies in preventing diabetes. In this review, we aim to elucidate the complex association between gut microbiota and T2DM inflammation, metabolism, and immune disorders, the underlying mechanisms, and translational applications of gut microbiota. This review will provide novel insight into developing individualized therapy for T2DM patients based on gut microbiota immunometabolism.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Probióticos , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Grasos Volátiles , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiología , Humanos , Probióticos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA