Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(41): 49542-49555, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34610736

RESUMEN

To solve the poor sustainability of electroactive stimulation in clinical therapy, a strategy of combining a piezoelectric BaTiO3-coated Ti6Al4V scaffold and low-intensity pulsed ultrasound (LIPUS) was unveiled and named here as piezodynamic therapy. Thus, cell behavior could be regulated phenomenally by force and electricity simultaneously. First, BaTiO3 was deposited uniformly on the surface of the three-dimensional (3D) printed porous Ti6Al4V scaffold, which endowed the scaffold with excellent force-electricity responsiveness under pulsed ultrasound exposure. The results of live/dead staining, cell scanning electron microscopy, and F-actin staining showed that cells had better viability, better pseudo-foot adhesion, and more muscular actin bundles when they underwent the piezodynamic effect of ultrasound and piezoelectric coating. This piezodynamic therapy activated more mitochondria at the initial stage that intervened in the cell cycle by promoting cells' proliferation and weakened the apoptotic damage. The quantitative real-time polymerase chain reaction data further confirmed that the costimulation of the ultrasound and the piezoelectric scaffolds could trigger adequate current to upregulated the expression of osteogenic-related genes. The continuous electric cues could be generated by the BaTiO3-coated scaffold and intermittent LIPUS stimulation; thereon, more efficient bone healing would be promoted by piezodynamic therapy in future treatment.


Asunto(s)
Aleaciones/química , Compuestos de Bario/química , Andamios del Tejido/química , Titanio/química , Ondas Ultrasónicas , Aleaciones/efectos de la radiación , Animales , Apoptosis/efectos de los fármacos , Compuestos de Bario/efectos de la radiación , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Porosidad , Seudópodos/efectos de los fármacos , Ratas Sprague-Dawley , Titanio/efectos de la radiación , Humectabilidad
2.
Sci Rep ; 8(1): 6623, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29700340

RESUMEN

Ti-24Nb-4Zr-8Sn (Ti2448), a new ß-type Ti alloy, consists of nontoxic elements and exhibits a low uniaxial tensile elastic modulus of approximately 45 GPa for biomedical implant applications. Nevertheless, the bio-corrosion resistance and biocompatibility of Ti2448 alloys must be improved for long-term clinical use. In this study, a rapid electrochemical anodization treatment was used on Ti2448 alloys to enhance the bio-corrosion resistance and bone cell responses by altering the surface characteristics. The proposed anodization process produces a unique hybrid oxide layer (thickness 50-120 nm) comprising a mesoporous outer section and a dense inner section. Experiment results show that the dense inner section enhances the bio-corrosion resistance. Moreover, the mesoporous surface topography, which is on a similar scale as various biological species, improves the wettability, protein adsorption, focal adhesion complex formation and bone cell differentiation. Outside-in signals can be triggered through the interaction of integrins with the mesoporous topography to form the focal adhesion complex and to further induce osteogenic differentiation pathway. These results demonstrate that the proposed electrochemical anodization process for Ti2448 alloys with a low uniaxial tensile elastic modulus has the potential for biomedical implant applications.


Asunto(s)
Aleaciones , Fenómenos Bioquímicos , Materiales Biocompatibles/química , Corrosión , Osteocitos/fisiología , Adsorción , Aleaciones/análisis , Aleaciones/química , Materiales Biocompatibles/análisis , Adhesión Celular , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Humanos , Ensayo de Materiales , Células Madre Mesenquimatosas/citología , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Proteínas/química , Propiedades de Superficie
3.
Artif Organs ; 37(12): E191-201, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24147953

RESUMEN

Interbody fusion cages made of poly-ether-ether-ketone (PEEK) have been widely used in clinics for spinal disorders treatment; however, they do not integrate well with surrounding bone tissue. Ti-6Al-4V (Ti) has demonstrated greater osteoconductivity than PEEK, but the traditional Ti cage is generally limited by its much greater elastic modulus (110 GPa) than natural bone (0.05-30 GPa). In this study, we developed a porous Ti cage using electron beam melting (EBM) technique to reduce its elastic modulus and compared its spinal fusion efficacy with a PEEK cage in a preclinical sheep anterior cervical fusion model. A porous Ti cage possesses a fully interconnected porous structure (porosity: 68 ± 5.3%; pore size: 710 ± 42 µm) and a similar Young's modulus as natural bone (2.5 ± 0.2 GPa). When implanted in vivo, the porous Ti cage promoted fast bone ingrowth, achieving similar bone volume fraction at 6 months as the PEEK cage without autograft transplantation. Moreover, it promoted better osteointegration with higher degree (2-10x) of bone-material binding, demonstrated by histomorphometrical analysis, and significantly higher mechanical stability (P < 0.01), shown by biomechanical testing. The porous Ti cage fabricated by EBM could achieve fast bone ingrowth. In addition, it had better osseointegration and superior mechanical stability than the conventional PEEK cage, demonstrating great potential for clinical application.


Asunto(s)
Trasplante Óseo/instrumentación , Vértebras Cervicales/cirugía , Cetonas/química , Oseointegración , Polietilenglicoles/química , Fusión Vertebral/instrumentación , Titanio/química , Aleaciones , Animales , Benzofenonas , Materiales Biocompatibles , Fenómenos Biomecánicos , Vértebras Cervicales/diagnóstico por imagen , Módulo de Elasticidad , Diseño de Equipo , Femenino , Polímeros , Porosidad , Rango del Movimiento Articular , Ovinos , Factores de Tiempo , Microtomografía por Rayos X
4.
Sci Rep ; 3: 2156, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23831664

RESUMEN

Ti-Nb-based Gum Metals exhibit extraordinary superelasticity with ultralow elastic modulus, superior strength and ductility, and a peculiar dislocation-free deformation behavior, most of which challenge existing theories of crystal strength. Additionally, this kind of alloys actually displays even more anomalous mechanical properties, such as the non-linear superelastic behavior, accompanied by a pronounced tension-to-compression asymmetry, and large ductility with a low Poisson's ratio. Two main contradictory arguments exist concerning the deformation mechanisms of those alloys, i.e., formation of reversible nanodisturbance and reversible martensitic transformation. Herein we used the in-situ synchrotron high-energy X-ray scattering technique to reveal the novel intrinsic physical origin of all anomalous mechanical properties of the Ti-24Nb-4Zr-8Sn-0.10O alloy, a typical gum-like metal. Our experiments provide direct evidence on two different kinds of interesting, stress-induced, reversible nanoscale martensitic transitions, i.e., the austenitic regions with B2 structure transform to α″ martensite and those with BCC structure transform to δ martensite.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...