Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Gene Ther ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806621

RESUMEN

Acute myeloid leukemia (AML) is a malignant clonal hematopoietic disease with a poor prognosis. Understanding the interaction between leukemic cells and the tumor microenvironment (TME) can help predict the prognosis of leukemia and guide its treatment. Re-analyzing the scRNA-seq data from the CSC and G20 cohorts, using a Python-based pipeline including machine-learning-based scVI-tools, recapitulated the distinct hierarchical structure within the samples of AML patients. Weighted correlation network analysis (WGCNA) was conducted to construct a weighted gene co-expression network and to identify gene modules primarily focusing on hematopoietic stem cells (HSCs), multipotent progenitors (MPPs), and natural killer (NK) cells. The analysis revealed significant deregulation in gene modules associated with aerobic respiration and ribosomal/cytoplasmic translation. Cell-cell communications were elucidated by the CellChat package, revealing an imbalance of activating and inhibitory immune signaling pathways. Interception of genes upregulated in leukemic HSCs & MPPs as well as in NKG2A-high NK cells was used to construct prognostic models. Normal Cox and artificial neural network models based on 10 genes were developed. The study reveals the deregulation of mitochondrial and ribosomal genes in AML patients and suggests the co-occurrence of stimulatory and inhibitory factors in the AML TME.

2.
Heliyon ; 9(7): e17386, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37415951

RESUMEN

The contribution of oncogenes to tumor-associated RNA splicing and the relevant molecular mechanisms therein require further elaboration. Here, we show that oncogenic Aurora kinase A (AURKA) promotes breast cancer-related RNA aberrant splicing in a context-dependent manner. AURKA regulated pan-breast cancer-associated RNA splicing events including GOLGA4, RBM4 and UBQLN1. Aberrant splicing of GOLGA4 and RBM4 was closely related to breast cancer development. Mechanistically, AURKA interacted with the splicing factor YBX1 and promoted AURKA-YBX1 complex-mediated GOLGA4 exon inclusion. AURKA binding to the splicing factor hnRNPK promoted AURKA-hnRNPK complex-mediated RBM4 exon skipping. Analysis of clinical data identified an association between the AURKA-YBX1/hnRNPK complex and poor prognosis in breast cancer. Blocking AURKA nuclear translocation with small molecule drugs partially reversed the oncogenic splicing of RBM4 and GOLGA4 in breast cancer cells. In summary, oncogenic AURKA executes its function on modulating breast cancer-related RNA splicing, and nuclear AURKA is distinguished as a hopeful target in the case of treating breast cancer.

3.
Sci Rep ; 12(1): 11181, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778451

RESUMEN

Tumor immune microenvironment exerts a profound effect on the population of infiltrating immune cells. Tissue inhibitor of matrix metalloproteinase 1 (TIMP1) is frequently overexpressed in a variety of cells, particularly during inflammation and tissue injury. However, its function in cancer and immunity remains enigmatic. In this study, we find that TIMP1 is substantially up-regulated during tumorigenesis through analyzing cancer bioinformatics databases, which is further confirmed by IHC tissue microarrays of clinical samples. The TIMP1 level is significantly increased in lymphocytes infiltrating the tumors and correlated with cancer progression, particularly in GBM. Notably, we find that the transcriptional factor Sp1 binds to the promoter of TIMP1 and triggers its expression in GBM. Together, our findings suggest that the Sp1-TIMP1 axis can be a potent biomarker for evaluating immune cell infiltration at the tumor sites and therefore, the malignant progression of GBM.


Asunto(s)
Glioblastoma , Linfocitos Infiltrantes de Tumor , Factor de Transcripción Sp1 , Inhibidor Tisular de Metaloproteinasa-1 , Carcinogénesis , Línea Celular Tumoral , Glioblastoma/inmunología , Glioblastoma/patología , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/inmunología , Inhibidor Tisular de Metaloproteinasa-1/biosíntesis , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/inmunología , Microambiente Tumoral/inmunología
4.
Signal Transduct Target Ther ; 7(1): 97, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35361747

RESUMEN

Aberrant RNA splicing produces alternative isoforms of genes to facilitate tumor progression, yet how this process is regulated by oncogenic signal remains largely unknown. Here, we unveil that non-canonical activation of nuclear AURKA promotes an oncogenic RNA splicing of tumor suppressor RBM4 directed by m6A reader YTHDC1 in lung cancer. Nuclear translocation of AURKA is a prerequisite for RNA aberrant splicing, specifically triggering RBM4 splicing from the full isoform (RBM4-FL) to the short isoform (RBM4-S) in a kinase-independent manner. RBM4-S functions as a tumor promoter by abolishing RBM4-FL-mediated inhibition of the activity of the SRSF1-mTORC1 signaling pathway. Mechanistically, AURKA disrupts the binding of SRSF3 to YTHDC1, resulting in the inhibition of RBM4-FL production induced by the m6A-YTHDC1-SRSF3 complex. In turn, AURKA recruits hnRNP K to YTHDC1, leading to an m6A-YTHDC1-hnRNP K-dependent exon skipping to produce RBM4-S. Importantly, the small molecules that block AURKA nuclear translocation, reverse the oncogenic splicing of RBM4 and significantly suppress lung tumor progression. Together, our study unveils a previously unappreciated role of nuclear AURKA in m6A reader YTHDC1-dependent oncogenic RNA splicing switch, providing a novel therapeutic route to target nuclear oncogenic events.


Asunto(s)
Empalme Alternativo , Aurora Quinasa A , Proteínas del Tejido Nervioso , Factores de Empalme de ARN , Proteínas de Unión al ARN , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Núcleo Celular/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Empalme del ARN , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
5.
Mol Cancer ; 19(1): 138, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32894144

RESUMEN

BACKGROUND: Inactivation of the tumor suppressor p53 is critical for pathogenesis of glioma, in particular glioblastoma multiforme (GBM). MDM2, the main negative regulator of p53, binds to and forms a stable complex with p53 to regulate its activity. Hitherto, it is unclear whether the stability of the p53/MDM2 complex is affected by lncRNAs, in particular circular RNAs that are usually abundant and conserved, and frequently implicated in different oncogenic processes. METHODS: RIP-seq and RIP-qPCR assays were performed to determine the most enriched lncRNAs (including circular RNAs) bound by p53, followed by bioinformatic assays to estimate the relevance of their expression with p53 signaling and gliomagenesis. Subsequently, the clinical significance of CDR1as was evaluated in the largest cohort of Chinese glioma patients from CGGA (n = 325), and its expression in human glioma tissues was further evaluated by RNA FISH and RT-qPCR, respectively. Assays combining RNA FISH with protein immunofluorescence were performed to determine co-localization of CDR1as and p53, followed by CHIRP assays to confirm RNA-protein interaction. Immunoblot assays were carried out to evaluate protein expression, p53/MDM2 interaction and p53 ubiquitination in cells in which CDR1as expression was manipulated. After AGO2 or Dicer was knocked-down to inhibit miRNA biogenesis, effects of CDR1as on p53 expression, stability and activity were determined by immunoblot, RT-qPCR and luciferase reporter assays. Meanwhile, impacts of CDR1as on DNA damage were evaluated by flow cytometric assays and immunohistochemistry. Tumorigenicity assays were performed to determine the effects of CDR1as on colony formation, cell proliferation, the cell cycle and apoptosis (in vitro), and on tumor volume/weight and survival of nude mice xenografted with GBM cells (in vivo). RESULTS: CDR1as is found to bind to p53 protein. CDR1as expression decreases with increasing glioma grade and it is a reliable independent predictor of overall survival in glioma, particularly in GBM. Through a mechanism independent of acting as a miRNA sponge, CDR1as stabilizes p53 protein by preventing it from ubiquitination. CDR1as directly interacts with the p53 DBD domain that is essential for MDM2 binding, thus disrupting the p53/MDM2 complex formation. Induced upon DNA damage, CDR1as may preserve p53 function and protect cells from DNA damage. Significantly, CDR1as inhibits tumor growth in vitro and in vivo, but has little impact in cells where p53 is absent or mutated. CONCLUSIONS: Rather than acting as a miRNA sponge, CDR1as functions as a tumor suppressor through binding directly to p53 at its DBD region to restrict MDM2 interaction. Thus, CDR1as binding disrupts the p53/MDM2 complex to prevent p53 from ubiquitination and degradation. CDR1as may also sense DNA damage signals and form a protective complex with p53 to preserve p53 function. Therefore, CDR1as depletion may play a potent role in promoting tumorigenesis through down-regulating p53 expression in glioma. Our results broaden further our understanding of the roles and mechanism of action of circular RNAs in general and CDR1as in particular, and can potentially open up novel therapeutic avenues for effective glioma treatment.


Asunto(s)
Glioblastoma/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , ARN Circular/genética , ARN Largo no Codificante/genética , Proteína p53 Supresora de Tumor/genética , Animales , Apoptosis/genética , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Daño del ADN/genética , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/patología , Humanos , Ratones , Transfección
6.
Ther Adv Endocrinol Metab ; 10: 2042018818821296, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30728939

RESUMEN

The laminin subunit alpha 2 (LAMA2) gene encodes an alpha 2 chain, which constitutes one of the subunits of laminin 2 (merosin) and laminin 4 (s-merosin). In the current study, we investigated the relationship between LAMA2 promoter methylation status and the invasiveness of clinically nonfunctioning pituitary adenomas (PitNETs). Specimens from patients with nonfunctioning PitNET were classified into three groups according to preoperative computed tomography (CT)/magnetic resonance imaging findings: a normal group (n = 6), non-invasive group (n = 11) and invasive group (n = 6). LAMA2 expression was assessed using quantitative real-time polymerase chain reaction (RT-qPCR) and western blotting, and the methylation status of the LAMA2 promoter region was observed using sodium bisulfite sequencing. Furthermore, 5-aza-2-deoxycytidine was used to explore the relationship between decreased LAMA expression and methylation in PitNET cells. According to the RT-qPCR and western blotting results, LAMA2 expression was downregulated in invasive PitNET, while the methylation of the LAMA2 promoter was increased. Methylation of the LAMA2 promoter decreased the expression of LAMA2. Thus, changes in LAMA2 expression due to promoter methylation were inversely correlated with the invasiveness of PitNET and the protein functions as a tumor suppressor. In addition, overexpression and demethylation of LAMA2 suppressed the invasion of PitNET cells, partially by exerting effects on the PTEN-PI3K/AKT signaling pathway and matrix metalloproteinase-9 (MMP-9). Furthermore, a xenograft model was also generated, and LAMA2 overexpression significantly suppressed tumor growth in vivo. Thus, LAMA2 expression and methylation patterns might be used as biomarkers to predict the prognosis of patients with PitNET.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...