Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Asian Nat Prod Res ; 25(5): 429-437, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35930443

RESUMEN

Two new monoterpenoid indole alkaloids 3-hydroxylochnerine (1) and 10-hydroxyvinorine (2) were isolated from the roots of Rauvolfia yunnanensis. Their structures were elucidated based on the analysis of spectroscopic data and ECD calculation. Both compounds exhibited potent antimicrobial activity against Bacillus subtilis and Escherichia coli, and their activities were comparable to the well-known antibacterial drug berberine.


Asunto(s)
Antiinfecciosos , Rauwolfia , Alcaloides de Triptamina Secologanina , Alcaloides de Triptamina Secologanina/química , Rauwolfia/química , Estructura Molecular , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Alcaloides Indólicos
2.
Heliyon ; 8(11): e11440, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36387565

RESUMEN

Background: Millions of people suffer from Alzheimer's disease (AD) and Parkinson's disease (PD) worldwide. Due to their complex pathology, no effective pharmacological treatment has been found to date, despite extensive research. Developing new, effective therapeutic agents to cure these disease remains a major challenge. Although the cause of AD and PD remains illusive, numerous studies indicates that oxidative stress and neuro-inflammation lead to neurodegeneration in the central nervous system and play vital role in AD and PD morbidity and progression. Flavonoids, which are found widely in nature, exhibit anti-oxidative, anti-inflammatory, anti-mutative, anti-microbial, and neuroprotective properties, so have potential to treat these two kinds of diseases. Methods: In this review, we focus on the anti-oxidative and neuroprotective action of flavonoids in attenuating Alzheimer's and Parkinson's disease, and how they might be harnessed in the development of new pharmacological agents to treat these two diseases. Result: Some flavonoid compounds, like hesperidin, naringin, naringenin, tangeretin, nobiletin, silibinin, Epigallocatechin-3-gallate, displayed to be effective in both AD and PD. Conclusion: Considerable studies have demonstrated the anti-AD and anti-PD effects of flavonoids through various in vitro and in vivo models. However, more rigorous studies are needed to be done for flavonoids to develop into effective drugs and apply them to clinical practice.

3.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-776838

RESUMEN

Seven new isoquinoline alkaloids, 9-(2'-formyl-5', 6'-dimethoxyphenoxy)-1, 2, 3, 10-tetramethoxy dehydroaporphine (1), 9-(2'-formyl-5', 6'-dimethoxyphenoxy)-1, 2, 3, 10-tetramethoxy oxoaporphine (2), 3-methoxy-2'-formyl oxohernandalin (3), (-)-9-(2'-methoxycarbonyl-5', 6'-dimethoxyphenoxy)-1, 2, 3, 10-tetramethoxy aporphine (4), (-)-2'-methoxycarbonyl thaliadin (5), (-)-9-(2'-methoxyethyl-5', 6'-dimethoxyphenoxy)-1, 2, 3, 10-tetramethoxy aporphine (6), (-)-3-methoxy hydroxyhernandalinol (7), together with six known isoquinoline alkaloids (8-13) were isolated from the roots of Thalictrum foetidum. Their structures were elucidated by extensive spectroscopic measurements. Compounds 1 and 2 showed significant selective cytotoxicity against glioma stem cells (GSC-3 and GSC-18) with IC values ranging from 2.36 to 5.37 μg·mL.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...