Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(48): 55659-55668, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38010144

RESUMEN

The liquid-phase reduction method for the preparation of metal nanoparticles (NPs) by the reduction of metal salts or metal complexes in a solvent with a reducing agent is widely used to prepare Ni NPs that exhibit high catalytic activity in various organic transformations. Intensive research has been conducted on control of the morphology and size of Ni NPs by the addition of polymers and long-chain compounds as protective agents; however, these agents typically cause a decrease in catalytic activity. Here, we report on the preparation of Ni NPs using hydrosilane (Ni-Si) as a reducing agent and a size-controlling agent. The substituents on silicon can control not only the size but also the crystal phase of the Ni NPs. The prepared Ni NPs exhibited high catalytic performance for the hydrogenation of unsaturated compounds, aromatics, and heteroaromatics to give the corresponding hydrogenated products in high yields. The unique feature of Ni catalysts prepared by the hydrosilane-assisted method is that the catalysts can be handled under air as opposed to conventional Ni catalysts such as Raney Ni. Characterization studies indicated that the surface hydroxide was reduced under the catalytic reaction conditions with H2 at around 100 °C and with the assistance of organosilicon compounds deposited on the catalyst surface. The hydrosilane-assisted method presented here could be applied to the preparation of supported Ni catalysts (Ni-Si/support). The interaction between the Ni NPs and a metal oxide support enabled the direct amination of alcohols with ammonia to afford the primary amine selectively.

2.
ACS Appl Mater Interfaces ; 15(14): 17957-17968, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37010448

RESUMEN

The development of effective solid acid-base bifunctional catalysts remains a challenge because of the difficulty associated with designing and controlling their active sites. In the present study, highly pure perovskite oxide nanoparticles with d0-transition-metal cations such as Ti4+, Zr4+, and Nb5+ as B-site elements were successfully synthesized by a sol-gel method using dicarboxylic acids. Moreover, the specific surface area of SrTiO3 was increased to 46 m2 g-1 by a simple procedure of changing the atmosphere from N2 to air during calcination of an amorphous precursor. The resultant SrTiO3 nanoparticles showed the highest catalytic activity for the cyanosilylation of acetophenone with trimethylsilyl cyanide (TMSCN) among the tested catalysts not subjected to a thermal pretreatment. Various aromatic and aliphatic carbonyl compounds were efficiently converted to the corresponding cyanohydrin silyl ethers in good-to-excellent yields. The present system was applicable to a larger-scale reaction of acetophenone with TMSCN (10 mmol scale), in which 2.06 g of the analytically pure corresponding product was isolated. In this case, the reaction rate was 8.4 mmol g-1 min-1, which is the highest rate among those reported for heterogeneous catalyst systems that do not involve a pretreatment. Mechanistic studies, including studies of the catalyst effect, Fourier transform infrared spectroscopy, and temperature-programmed desorption measurements using probe molecules such as pyridine, acetophenone, CO2, and CHCl3, and the poisoning effect of pyridine and acetic acid toward the cyanosilylation, revealed that moderate-strength acid and base sites present in moderate amounts on SrTiO3 most likely enable SrTiO3 to act as a bifunctional acid-base solid catalyst through cooperative activation of carbonyl compounds and TMSCN. This bifunctional catalysis through SrTiO3 resulted in high catalytic performance even without a heat pretreatment, in sharp contrast to the performance of basic MgO and acidic TiO2 catalysts.

3.
J Am Chem Soc ; 145(14): 7888-7897, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36996317

RESUMEN

Haber-Bosch process produces ammonia to provide food for over 5 billion people; however, it is currently required to be produced without the use of fossil fuels to reduce global CO2 emissions by 3% or more. It is indispensable to devise heterogeneous catalysts for the synthesis of ammonia below 100-150 °C to minimize the energy consumption of the process. In this paper, we report metallic iron particles with an electron-donating material as a catalyst for ammonia synthesis. Metallic iron particles combined with a mixture of BaO and BaH2 species in an appropriate manner could catalyze ammonia synthesis even at 100 °C. The iron catalyst revealed that iron can exhibit a high turnover frequency (∼12 s-1), which is over an order of magnitude higher than those of other transition metals used in highly active catalysts for ammonia synthesis. This can be attributed to the intrinsic nature of iron to desorb adsorbed hydrogen atoms as hydrogen molecules at low temperatures.

4.
Molecules ; 27(21)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36364150

RESUMEN

N-rich organic materials bearing polyphenolic moieties in their building networks and nanoscale porosities are very demanding in the context of designing efficient biomaterials or drug carriers for the cancer treatment. Here, we report the synthesis of a new triazine-based secondary-amine- and imine-linked polyphenolic porous organic polymer material TrzTFPPOP and explored its potential for in vitro anticancer activity on the human colorectal carcinoma (HCT 116) cell line. This functionalized (-OH, -NH-, -C=N-) organic material displayed an exceptionally high BET surface area of 2140 m2 g-1 along with hierarchical porosity (micropores and mesopores), and it induced apoptotic changes leading to high efficiency in colon cancer cell destruction via p53-regulated DNA damage pathway. The IC30, IC50, and IC70 values obtained from the MTT assay are 1.24, 3.25, and 5.25 µg/mL, respectively.


Asunto(s)
Neoplasias Colorrectales , Polímeros , Humanos , Porosidad , Polímeros/farmacología , Células HCT116 , Portadores de Fármacos , Neoplasias Colorrectales/tratamiento farmacológico
5.
J Am Chem Soc ; 144(31): 14090-14100, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35860845

RESUMEN

The pursuit of a high surface area while maintaining high catalytic performance remains a challenge due to a trade-off relationship between these two features in some cases. In this study, mesoporous todorokite-type manganese oxide (OMS-1) nanoparticles with high specific surface areas were synthesized in one step by a new synthesis approach involving crystallization (i.e., solid-state transformation) of a precursor produced by a redox reaction between MnO4- and Mn2+ reagents. The use of a low-crystallinity precursor with small particles is essential to achieve this solid-state transformation into OMS-1 nanoparticles. The specific surface area reached up to ca. 250 m2 g-1, which is much larger than those (13-185 m2 g-1) for Mg-OMS-1 synthesized by previously reported methods including multistep synthesis or dissolution/precipitation processes. Despite ultrasmall nanoparticles, a linear correlation between the catalytic reaction rates of OMS-1 and the surface areas was observed without a trade-off relationship between particle size and catalytic performance. These OMS-1 nanoparticles exhibited the highest catalytic activity among the Mn-based catalysts tested for the oxidation of benzyl alcohol and thioanisole with molecular oxygen (O2) as the sole oxidant, including highly active ß-MnO2 nanoparticles. The present OMS-1 nanomaterial could also act as a recyclable heterogeneous catalyst for the aerobic oxidation of various aromatic alcohols and sulfides under mild reaction conditions. The mechanistic studies showed that alcohol oxidation proceeds with oxygen species caused by the solid, and the high surface area of OMS-1 significantly contributes to an enhancement of the catalytic activity for aerobic oxidation.


Asunto(s)
Compuestos de Manganeso , Nanopartículas , Catálisis , Cristalización , Compuestos de Manganeso/química , Oxidación-Reducción , Óxidos/química , Oxígeno
6.
ACS Appl Mater Interfaces ; 14(3): 4144-4154, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35014256

RESUMEN

Reductive amination of carbonyls to primary amines is of importance to the synthesis of fine chemicals; however, this reaction with heterogeneous catalysts containing earth-abundant metals under mild conditions remains scarce. Here, we show that the nickel catalyst with mixed oxidation states enables such synthesis of primary amines under low temperature (50 °C) and H2 pressure (0.9 MPa). The catalyst shows activity in both water and toluene. The high activity likely results from the formation of small (ca. 4.6 nm) partially oxidized nickel nanoparticles (NPs) homogeneously anchored onto the silica and their synergistic effect. Detailed characterizations indicate stabilization of NPs through strong metal support interaction via electron donation from the metal to support. We identify that the support endowed with an amphoteric nature shows better performance. This strategy of making small metal-metal oxide NPs will open an avenue toward the rational development of efficient catalysts that would allow for other organic transformations under mild reaction conditions.

7.
ACS Appl Mater Interfaces ; 14(5): 6528-6537, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35080862

RESUMEN

Heterogeneously catalyzed aerobic oxidative C-H functionalization under mild conditions is a chemical process to obtain desired oxygenated products directly. Nanosized murdochite-type oxide Mg6MnO8 (Mg6MnO8-MA) was successfully synthesized by the sol-gel method using malic acid. The specific surface area reached up to 104 m2 g-1, which is about 7 times higher than those (2-15 m2 g-1) of Mg6MnO8 synthesized by previously reported methods. Mg6MnO8-MA exhibited superior catalytic performance to those of other Mn- and Mg-based oxides, including manganese oxides with Mn-O-Mn active sites for the oxidation of fluorene with molecular oxygen (O2) as the sole oxidant under mild conditions (40 °C). The present catalytic system was applicable to the aerobic oxidation of various substrates. The catalyst could be recovered by simple filtration and reused several times without obvious loss of its high catalytic performance. The correlation between the reactivity and the pKa of the substrates, basic properties of catalysts, and kinetic isotope effects suggest a basicity-controlled mechanism of hydrogen atom transfer. The 18O-labeling experiments, kinetics, and mechanistic studies showed that H abstraction of the hydrocarbon proceeds via a mechanism involving O2 activation. The structure of Mg6MnO8 consisting of isolated Mn4+ species located in a basic MgO matrix plays an important role in the present oxidation.

8.
ACS Appl Mater Interfaces ; 12(47): 52668-52677, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33185087

RESUMEN

Active metal catalysts are the key in chemical industry for sustainable production of multitude of chemical resources. Here, we report a new ruthenium (Ru) composite with a synergistically controlled nanostructure and electronic properties as a highly efficient hydrogenation catalyst which comprises stable small Ru nanoparticles (mean particle size, ca. 0.9 nm) in situ generated into a nanoporous N-functionalized carbon with high surface area (ca. 650 m2 g-1) and has strong electron-donating power of Ru sites of nanoparticles. The scalable and highly reusable catalyst, prepared from a self-assembled Ru complex, performs actively with low per metal usage under mild conditions (60-80 °C and 0.5-1.0 MPa H2) for selective hydrogenation of various quinolines and pyridines. The role of electron-donating properties of the new Ru nanohybrid for highly efficient catalysis was characterized by both experiments and computational studies. Density functional theory calculations reveal that weak adsorption energies of quinoline at the electron-rich Ru surface prevents poisoning caused by its strong coordination and provides excellent reusability of the catalyst, while low activation barriers for the hydrogenation steps of the N-heterocyclic ring correlate with high catalytic activity. Our catalyst exhibits 5-24-fold higher turnover frequency up to ca. 167 h-1 among the efficient noble metal catalysts reported for selective hydrogenation of quinoline to 1,2,3,4-tetrahydroquinoline.

9.
ACS Appl Mater Interfaces ; 12(32): 36004-36013, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32805787

RESUMEN

Mesoporous ß-MnO2 nanoparticles were synthesized by a template-free low-temperature crystallization of Mn4+ precursors (low-crystallinity layer-type Mn4+ oxide, c-distorted H+-birnessite) produced by the reaction of MnO4- and Mn2+. The Mn starting materials, pH of the reaction solution, and calcination temperatures significantly affect the crystal structure, surface area, porous structure, and morphology of the manganese oxides formed. The pH conditions during the precipitation of Mn4+ precursors are important for controlling the morphology and porous structure of ß-MnO2. Nonrigid aggregates of platelike particles with slitlike pores (ß-MnO2-1 and -2) were obtained from the combinations of NaMnO4/MnSO4 and NaMnO4/Mn(NO3)2, respectively. On the other hand, spherelike particles with ink-bottle shaped pores (ß-MnO2-3) were formed in NaMnO4/Mn(OAc)2 with pH adjustment (pH 0.8). The specific surface areas for ß-MnO2-1, -2, and -3 were much higher than those for nonporous ß-MnO2 nanorods synthesized using a typical hydrothermal method (ß-MnO2-HT). On the other hand, c-distorted H+-birnessite precursors with a high interlayer metal cation (Na+ and K+) content led to the formation of α-MnO2 with a 2 × 2 tunnel structure. These mesoporous ß-MnO2 materials acted as effective heterogeneous catalysts for the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) as a bioplastic monomer and for the transformation of aromatic alcohols to the corresponding aldehydes, where the catalytic activities of ß-MnO2-1, -2, and -3 were approximately 1 order of magnitude higher than that of ß-MnO2-HT. ß-MnO2-3 exhibited higher catalytic activity (especially for larger molecules) than the other ß-MnO2 materials, and this is likely attributed to the nanometer-sized spaces.

10.
Nat Commun ; 11(1): 2001, 2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32332727

RESUMEN

The lack of efficient catalysts for ammonia synthesis from N2 and H2 gases at the lower temperature of ca. 50 °C has been a problem not only for the Haber-Bosch process, but also for ammonia production toward zero CO2 emissions. Here, we report a new approach for low temperature ammonia synthesis that uses a stable electron-donating heterogeneous catalyst, cubic CaFH, a solid solution of CaF2 and CaH2 formed at low temperatures. The catalyst produced ammonia from N2 and H2 gases at 50 °C with an extremely small activation energy of 20 kJ mol-1, which is less than half that for conventional catalysts reported. The catalytic performance can be attributed to the weak ionic bonds between Ca2+ and H- ions in the solid solution and the facile release of hydrogen atoms from H- sites.

11.
Chem Commun (Camb) ; 56(14): 2095-2098, 2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-31995042

RESUMEN

High-surface-area ß-MnO2 (ß-MnO2-HS) nanoparticles could act as effective heterogeneous catalysts for the one-pot oxidative sulfonamidation of various aromatic and heteroaromatic thiols to the corresponding sulfonamides using molecular oxygen (O2) and ammonia (NH3) as respective oxygen and nitrogen sources, without the need for any additives.

12.
Chem Sci ; 11(36): 9884-9890, 2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34094248

RESUMEN

Heterogeneously catalysed synthesis of primary amines by direct amination of alcohols with ammonia has long been an elusive goal. In contrast to reported Ru-based catalytic systems, we report that Ru-MgO/TiO2 acts as an effective heterogeneous catalyst for the direct amination of a variety of alcohols to primary amines at low temperatures of ca. 100 °C without the introduction of H2 gas. The present system could be applied to a variety of alcohols and provides an efficient synthetic route for 2,5-bis(aminomethyl)furan (BAMF), an attention-getting biomonomer. The high catalytic performance can be rationalized by the reactivity tuning of Ru-H species using MgO. Spectroscopic measurements suggest that MgO enhances the reactivity of hydride species by electron donation from MgO to Ru.

13.
RSC Adv ; 10(54): 32296-32300, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35516507

RESUMEN

Easily prepared Ni/NiO acts as a heterogeneous catalyst for the one-pot reductive amination of carbonyl compounds with nitroarenes to afford secondary amines with H2 as a hydride source. This catalytic system does not require a special technique to avoid air-exposure, in contrast to the common heterogeneous Ni catalysts.

14.
RSC Adv ; 10(39): 23148-23164, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35520307

RESUMEN

The development of drug carriers based on nanomaterials that can selectively carry chemotherapeutic agents to cancer cells has become a major focus in biomedical research. A novel pH-sensitive multifunctional envelope-type mesoporous silica nanoparticle (SBA-15) was fabricated for targeted drug delivery to human colorectal carcinoma cells (HCT-116). SBA-15 was functionalized with folic acid (FA), and the material was loaded with the water-insoluble flavonoid, quercetin (QN). Additionally, acid-labile magnetite Fe3O4 nanoparticles were embedded over the FA-functionalized QN-loaded monodisperse SBA-15 to prepare the highly orchestrated material FA-FE-SBA15QN. The in vitro and in vivo anti-carcinogenic efficacy of FA-FE-SBA15QN was carried out to explore the pH-sensitive QN release with putative mechanistic aspects. FA-FE-SBA15QN caused a marked tumor suppression, and triggered mitochondrial-dependent apoptosis through a redox-regulated cellular signaling system. Furthermore, FA-IO-SBA-15-QN initiated the c-Jun N-terminal Kinase (JNK)-guided H2AX phosphorylation, which relayed the downstream apoptotic signal to the phosphorylate tumor suppressor protein, p53. On the other hand, the selective inhibition of heat shock protein-27 (HSP-27) by FA-FE-SBA15QN augmented the apoptotic fate through JNK/H2AX/p53 axis. The in vitro and in vivo magnetic resonance imaging (MRI) studies have indicated the theranostic perspective of the composite. Thus, the result suggested that the newly synthesized FA-FE-SBA15QN could be used as a promising chemo theranostic material for the management of carcinoma.

16.
Inorg Chem ; 58(18): 12272-12279, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31465205

RESUMEN

Phosphomolybdates with different P species exhibiting a 1D molecular structure are synthesized. The materials are constructed by a {[MoVI6O21]6-}n molecular tube as a shell with trapping a redox-active species P in the center. The building units ([(HPIIIO3)MoVI6O18]2- or [(PV2O7)MoVI12O36]4-) form at room temperature, which further polymerize linearly along the c-axis. Interestingly, the material shows an unusual heat-triggered intramolecular redox property, which undergoes an electron-transfer-oxygen-transfer procedure from [{(HPIIIO3)MoVI6O18]2-}n to {[(PV2O7)MoVI12O36]4-}n/2. The crystal structure of the material is stable during the oxidation reaction, while the central P is oxidized and the local structure changes.

17.
Inorg Chem ; 58(9): 6283-6293, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31013070

RESUMEN

The design and development of zeolitic transition metal oxides for selective oxidation are interesting due to the combination of the redox properties and microporosities. Redox-active zeolitic transition metal oxides based on ε-Keggin iron molybdates were synthesized. O2 can be activated by the materials via an electron-transfer-based process, and the materials can be oxidized even at room temperature. The materials are oxidized and reduced reversibly while the crystal structures are maintained. V is uniformly incorporated in the materials without changing the basic structures, and the redox properties of the materials are tuned by V. The materials are used as robust catalysts for ethyl lactate oxidation to form ethyl pyruvate using O2 as an oxidant.

18.
Chem Commun (Camb) ; 55(28): 4019-4022, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-30806415

RESUMEN

CePO4 nanorods with uniform surface Ce sites could work as a durable catalyst and showed the highest C2 yield of 18% in an electric field without the need for external heating, which was comparable to that reported for high-performance catalysts at high temperature (>900 K).

19.
Dalton Trans ; 48(6): 2220-2227, 2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-30681679

RESUMEN

In recent years, several novel strategies for speeding up the slow kinetics of the water oxidation reaction have attracted considerable attention for generation of O2. This is particularly important from the environmental perspective. Here we report a SBA-15 type, 2D-hexagonal functionalized mesoporous organosilica material as support for small Ag nanoparticles (NPs) by grafting the silica surface with 3-aminopropyltriethoxysilane, followed by chemical impregnation of Ag NPs at its surface, to obtain a AgNPs@SBA-NH2 material. The AgNPs@SBA-NH2 has been thoroughly characterized using several instrumental tools, such as powder X-ray diffraction, ultra-high resolution transition electron microscopy, N2 sorption, FT-IR spectroscopy, thermogravimetric and differential thermal analysis and X-ray photoelectron spectroscopy. High Brunauer-Emmett-Teller (BET) surface area and fine dispersion of Ag NPs throughout the surface of the amine-functionalized mesoporous material could enhance the rate of oxygen evolution reaction (OER) activity for AgNPs@SBA-NH2 in the electrochemical water splitting reaction.

20.
J Am Chem Soc ; 141(2): 890-900, 2019 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30612429

RESUMEN

Aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) as a bioplastics monomer is efficiently promoted by a simple system based on a nonprecious-metal catalyst of MnO2 and NaHCO3. Kinetic studies indicate that the oxidation of 5-formyl-2-furancarboxylic acid (FFCA) to FDCA is the slowest step for the aerobic oxidation of HMF to FDCA over activated MnO2. We demonstrate through combined computational and experimental studies that HMF oxidation to FDCA is largely dependent on the MnO2 crystal structure. Density functional theory (DFT) calculations reveal that vacancy formation energies at the planar oxygen sites in α- and γ-MnO2 are higher than those at the bent oxygen sites. ß- and λ-MnO2 consist of only planar and bent oxygen sites, respectively, with lower vacancy formation energies. Consequently, ß- and λ-MnO2 are likely to be good candidates as oxidation catalysts. On the other hand, experimental studies reveal that the reaction rates per surface area for the slowest step (FFCA oxidation to FDCA) decrease in the order of ß-MnO2 > λ-MnO2 > γ-MnO2 ≈ α-MnO2 > δ-MnO2 > ε-MnO2; the catalytic activity of ß-MnO2 exceeds that of the previously reported activated MnO2 by three times. The order is in good agreement not only with the DFT calculation results, but also with the reduction rates per surface area determined by the H2-temperature-programmed reduction measurements for MnO2 catalysts. The successful synthesis of high-surface-area ß-MnO2 significantly improves the catalytic activity for the aerobic oxidation of HMF to FDCA.


Asunto(s)
Ácidos Dicarboxílicos/síntesis química , Furaldehído/análogos & derivados , Furanos/síntesis química , Compuestos de Manganeso/química , Óxidos/química , Catálisis , Teoría Funcional de la Densidad , Furaldehído/química , Modelos Químicos , Oxidación-Reducción , Oxígeno/química , Bicarbonato de Sodio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...