Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am Nat ; 204(1): 30-42, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38857347

RESUMEN

AbstractPatterns in the correlated evolution of parental care and life history traits are long established but controversial. Although parental care is related to large egg size in many taxa, conflicting results have also been reported. To test the evolutionary relationships between parental care and life history traits, we performed phylogenetic comparative analyses using shield bugs (Heteroptera: Acanthosomatidae), in which maternal guarding of eggs and young has repeatedly evolved. Our analyses revealed that female body size affected reproductive resource allocation. Contrary to the expectations of current theories, the acquisition of maternal care was associated with small eggs, large clutches, and large egg resource allocation. There was a greater trade-off between egg size and clutch size in caring species than in noncaring species. Egg and hatchling developmental rates were not correlated with egg size but were slower in caring species than in noncaring species. Analyses of evolutionary transitions suggest that the establishment of large clutches, small eggs, and large egg resource allocation preceded the evolution of maternal care. To our knowledge, this is the first study clarifying the evolution of parental care linked with small eggs in invertebrates.


Asunto(s)
Evolución Biológica , Tamaño de la Nidada , Heterópteros , Conducta Materna , Filogenia , Animales , Heterópteros/crecimiento & desarrollo , Heterópteros/fisiología , Femenino , Rasgos de la Historia de Vida , Tamaño Corporal , Óvulo/crecimiento & desarrollo
2.
J Evol Biol ; 37(2): 152-161, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38366250

RESUMEN

Some taxa of mammals live in water, all of which evolved from land-dwelling ancestors. In the family Mustelidae (Mammalia: Carnivora), most species live on land, while otters, comprising the subfamily Lutrinae, inhabit aquatic environments, which include the almost exclusively aquatic sea otters (Enhydra lutris). Thus, the transition from a terrestrial to an aquatic lifestyle has occurred within this family. Despite potentially different selection pressures on body size in aquatic and terrestrial habitats, no divergence in the evolutionary pattern of body size between otters and other mustelids has previously been shown using models of trait evolution on a phylogeny. We applied models that explicitly incorporated lineage-specific directional selection to the evolution of body mass in living mustelids. Using a simulation-based likelihood and approximate Bayesian computation approach, we demonstrated lineage-specific directional selection for larger body mass in otters, which is distinct from other mustelids. There was no evidence of a difference between sea otters and other otters in the strength of directional selection for larger body mass. Additionally, our analyses supported no difference in the rate at which body mass evolves in both directions between otters and other mustelids. These findings suggest that the evolution of body mass in otters is associated with selective advantages of larger size rather than the relaxation of constraints on body size in aquatic habitats, like other aquatic mammals such as sirenians, cetaceans, and pinnipeds.


Asunto(s)
Nutrias , Animales , Teorema de Bayes , Filogenia , Ecosistema , Tamaño Corporal
3.
PeerJ ; 11: e15575, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37361048

RESUMEN

The mammalian lower jaw comprises a single bone, the dentary, which is a unique feature among vertebrates. The lower jaws of extinct non-mammalian synapsids were composed of the dentary and several postdentary bones. Synapsid fossils exhibit variation in the dentary size relative to the overall lower jaw. An evolutionary trend toward dentary enlargement and postdentary reduction in non-mammalian synapsids has long been documented but has not been established using modern phylogenetic comparative methods. In this study, we examine the evolutionary pattern of dentary size relative to the lower jaw through phylogenetic analyses of measurements in a broad range of non-mammalian synapsid taxa. Our analyses revealed an evolutionary trend toward dentary area enlargement relative to the overall lower jaw in the lateral view across all non-mammalian synapsids. This trend is likely due to vertical expansion of the dentary given that the same trend is not evident when looking at anterior to posterior measurements of the dentary relative to the lower jaw as a whole in lateral view. Ancestral character reconstructions revealed that the evolution of the measurements was not unidirectional in non-mammalian synapsids. Our results provide no evidence of an evolutionary trend toward the dentary enlargement at the expense of postdentary bones across non-mammalian synapsids. This implies that the evolutionary origin of the mammalian lower jaw is not adequately explained by the evolutionary trend of dentary enlargement throughout non-mammalian synapsids. Instead, selection that occurred during the transition from non-mammalian cynodonts to early mammals may have produced the mammalian lower jaw.


Asunto(s)
Evolución Biológica , Mamíferos , Animales , Filogenia , Maxilares , Mandíbula
4.
Evolution ; 76(12): 2986-3000, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36200621

RESUMEN

The evolution and development of complex molars as a key innovation in mammals have long been of interest yet remain poorly understood. With reference to century-old theories and modern findings, we focused on the teeth of pinnipeds (Carnivora) and cetaceans (Cetartiodactyla), which are morphologically simple compared with those of other mammals, and thus can be considered a reversal toward the ancestral state of nonmammalian synapsids. By reconstructing the evolutionary history of tooth complexity for the phylogenies of Carnivora and Cetartiodactyla, we established that a secondary evolution of simple teeth from more complex molars has occurred independently multiple times. Our phylogenetic comparative analyses showed that a simplification in tooth morphology was correlated with a more anterior dentition position relative to the component bones of the upper jaw in both Carnivora and Cetartiodactyla. These results suggest that the anterior shift of tooth position relative to the morphogenetic fields present in the jaw contributed to the evolutionary simplification in molar morphology. Our findings provide insights into the developmental basis of complex mammalian dentition.


Asunto(s)
Carnívoros , Diente , Animales , Dentición , Filogenia , Evolución Biológica , Diente/anatomía & histología , Morfogénesis
5.
J Evol Biol ; 31(9): 1268-1283, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29904973

RESUMEN

Extremely developed or specialized traits such as the elongated upper canines of extinct sabre-toothed cats are often not analogous to those of any extant species, which limits our understanding of their evolutionary cause. However, an extant species may have undergone directional selection for a similar extreme phenotype. Among living felids, the clouded leopard, Neofelis nebulosa, has exceptionally long upper canines for its body size. We hypothesized that directional selection generated the elongated upper canines of clouded leopards in a manner similar to the process in extinct sabre-toothed cats. To test this, we developed an approach that compared the effect of directional selection among lineages in a phylogeny using a simulation of trait evolution and approximate Bayesian computation. This approach was applied to analyse the evolution of upper canine length in the Felidae phylogeny. Our analyses consistently showed directional selection favouring longer upper canines in the clouded leopard lineage and a lineage leading to the sabre-toothed cat with the longest upper canines, Smilodon. Most of our analyses detected an effect of directional selection for longer upper canines in the lineage leading to another sabre-toothed cat, Homotherium, although this selection may have occurred exclusively in the primitive species. In all the analyses, the clouded leopard and Smilodon lineages showed comparable directional selection. This implies that clouded leopards share a selection advantage with sabre-toothed cats in having elongated upper canines.


Asunto(s)
Evolución Biológica , Felidae/genética , Selección Genética , Diente/anatomía & histología , Animales , Tamaño Corporal , Felidae/anatomía & histología , Fósiles , Filogenia
6.
Ecol Lett ; 15(3): 193-7, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22225600

RESUMEN

Males and females frequently have different fitness optima for shared traits, and as a result, genotypes that are high fitness as males are low fitness as females, and vice versa. When this occurs, biasing of offspring sex-ratio to reduce the production of the lower-fitness sex would be advantageous, so that for example, broods produced by high-fitness females should contain fewer sons. We tested for offspring sex-ratio biasing consistent with these predictions in broad-horned flour beetles. We found that in both wild-type beetles and populations subject to artificial selection for high- and low-fitness males, offspring sex ratios were biased in the predicted direction: low-fitness females produced an excess of sons, whereas high-fitness females produced an excess of daughters. Thus, these beetles are able to adaptively bias sex ratio and recoup indirect fitness benefits of mate choice.


Asunto(s)
Escarabajos/fisiología , Razón de Masculinidad , Conducta Sexual Animal , Animales , Tamaño Corporal , Femenino , Masculino
7.
J Insect Physiol ; 57(3): 415-20, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21211539

RESUMEN

A positive genetic correlation between periods of circadian rhythm and developmental time supports the hypothesis that circadian clocks are implicated in the timing of development. Empirical evidence for this genetic correlation in insects has been documented in two fly species. In contrast, here we show that there is no evidence of genetic correlation between circadian rhythm and development time in the adzuki bean beetle, Callosobruchus chinensis. This species has variation that is explained by a major gene in the expression and period length of circadian rhythm between strains. In this study, we found genetic variation in development time between the strains. The development time was not covaried with either the incidence or the period length of circadian rhythm among the strains. Crosses between strains suggest that development time is controlled by a polygene. In the F(2) individuals from the crosses, the circadian rhythm is attributable to allelic variation in the major gene. Across the F(2) individuals, development time was not correlated with either the expression or the period length of circadian rhythm. Thus, we found no effects of major genes responsible for variation in the circadian rhythm on development time in C. chinensis. Our findings collectively give no support to the hypothesis that the circadian clock is involved in the regulation of development time in this species.


Asunto(s)
Ritmo Circadiano , Escarabajos/crecimiento & desarrollo , Escarabajos/fisiología , Variación Genética , Animales , Escarabajos/genética , Femenino , Masculino
8.
Curr Biol ; 20(22): 2036-9, 2010 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-21055943

RESUMEN

Sexually antagonistic selection generates intralocus sexual conflict, an evolutionary tug-of-war between males and females over optimal trait values [1-4]. Although the potential for this conflict is universal, the evolutionary importance of intralocus conflict is controversial because conflicts are typically thought to be resolvable through the evolution of sex-specific trait development [1-8]. However, whether sex-specific trait expression always resolves intralocus conflict has not been established. We assessed this with beetle populations subjected to bidirectional selection on an exaggerated sexually selected trait, the mandible. Mandibles are only ever developed in males for use in male-male combat, and larger mandibles increase male fitness (fighting [9, 10] and mating success, as we show here). We find that females from populations selected for larger male mandibles have lower fitness, whereas females in small-mandible populations have highest fitness, even though females never develop exaggerated mandibles. This is because mandible development changes genetically correlated characters, resulting in a negative intersexual fitness correlation across these populations, which is the unmistakable signature of intralocus sexual conflict [1]. Our results show that sex-limited trait development need not resolve intralocus sexual conflict, because traits are rarely, if ever, genetically independent of other characters [11]. Hence, intralocus conflict resolution is not as easy as currently thought.


Asunto(s)
Escarabajos/anatomía & histología , Preferencia en el Apareamiento Animal , Animales , Tamaño Corporal , Escarabajos/genética , Escarabajos/fisiología , Femenino , Masculino , Reproducción , Caracteres Sexuales , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...