Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 129(30): 9429-38, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-17625851

RESUMEN

Performance improvements in DNA-modified surfaces required for microarray and biosensor applications rely on improved capabilities to accurately characterize the chemistry and structure of immobilized DNA molecules on micropatterned surfaces. Recent innovations in imaging X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) now permit more detailed studies of micropatterned surfaces. We have exploited the complementary information provided by imaging XPS and imaging TOF-SIMS to detail the chemical composition, spatial distribution, and hybridization efficiency of amine-terminated single-stranded DNA (ssDNA) bound to commercial polyacrylamide-based, amine-reactive microarray slides, immobilized in both macrospot and microarray diagnostic formats. Combinations of XPS imaging and small spot analysis were used to identify micropatterned DNA spots within printed DNA arrays on slide surfaces and quantify DNA elements within individual microarray spots for determination of probe immobilization and hybridization efficiencies. This represents the first report of imaging XPS of DNA immobilization and hybridization efficiencies for arrays fabricated on commercial microarray slides. Imaging TOF-SIMS provided distinct analytical data on the lateral distribution of DNA within single array microspots before and after target hybridization. Principal component analysis (PCA) applied to TOF-SIMS imaging datasets demonstrated that the combination of these two techniques provides information not readily observable in TOF-SIMS images alone, particularly in identifying species associated with array spot nonuniformities (e.g., "halo" or "donut" effects often observed in fluorescence images). Chemically specific spot images were compared to conventional fluorescence scanned images in microarrays to provide new information on spot-to-spot DNA variations that affect current diagnostic reliability, assay variance, and sensitivity.


Asunto(s)
Técnicas Biosensibles/métodos , Sondas de ADN , ADN/análisis , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , ADN de Cadena Simple/química , Aumento de la Imagen/métodos , Microscopía Fluorescente/métodos , Hibridación de Ácido Nucleico , Sensibilidad y Especificidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masa de Ion Secundario/métodos , Espectrometría por Rayos X/métodos , Propiedades de Superficie
2.
J Biomed Mater Res A ; 83(2): 423-33, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17455217

RESUMEN

Vascular endothelium plays an important role in preventing thrombogenesis. Bioactive molecules such as fibronectin-derived peptide Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) can be used to modify the surface of cardiovascular implants such as vascular grafts to promote endothelialization. Here we conjugated GRGDSP peptide to the nonfouling surface of an interpenetrating polymer network (IPN), and investigated the effects of the immobilized GRGDSP molecules on EC functions under static and flow conditions at well-defined GRGDSP surface densities (approximately 0 to 3 pmol/cm2). EC adhesion and spreading increased with GRGDSP surface density, reached a plateau at 1.5 pmol/cm2, and increased further beyond 2.8 pmol/cm2. Cell adhesion and spreading on GRGDSP induced two waves of extracellular signal-regulated kinase (ERK) activation, and 0.2 pmol/cm2 density of GRGDSP was sufficient to activate ERK. EC proliferation rate was not sensitive to GRGDSP surface density, suggesting that cell spreading at low-density of GRGDSP is sufficient to maintain EC proliferation. EC migration on lower-density GRGDSP-IPN surfaces was faster under static condition. With the increase of GRGDSP density, the speed and persistence of EC migration dropped quickly (0.2-0.8 pmol/cm2) and reached a plateau, followed by a slower and gradual decrease (1.5-3.0 pmol/cm2). These data suggest that the changes of EC functions were more sensitive to the increase of GRGDSP density at lower range. Under flow condition with shear stress at 12 dyn/cm2, EC migration was inhibited on GRGDSP-IPN surfaces, which may be attributed to the assembly of large focal adhesions induced by shear stress, suggesting a catch-bond characteristic for RGD-integrin binding. This study provides a rational base for surface engineering of cardiovascular implants.


Asunto(s)
Biopolímeros/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Oligopéptidos/farmacología , Péptidos/farmacología , Secuencia de Aminoácidos , Animales , Bovinos , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Endoteliales/citología , Datos de Secuencia Molecular , Oligopéptidos/química , Péptidos/química , Proteínas/metabolismo , Propiedades de Superficie
3.
Chem Mater ; 19(18): 4405-4414, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18815622

RESUMEN

This paper describes a new bioassay surface chemistry that effectively inhibits non-specific biomolecular and cell binding interactions, while providing a capacity for specific immobilization of desired biomolecules. Poly(ethylene glycol) (PEG) as the primary component in nonfouling film chemistry is well-established, but the multicomponent formulation described here is unique in that it (1) is applied in a single, reproducible, solution-based coating step; (2) can be applied to diverse substrate materials without the use of special primers; and (3) is readily functionalized to provide specific attachment chemistries. Surface analysis data are presented, detailing surface roughness, polymer film thickness, and film chemistry. Protein non-specific binding assays demonstrate significant inhibition of serum, fibrinogen, and lysozyme adsorption to coated glass, indium tin oxide, and tissue culture polystyrene dishes. Inhibition of S. aureus and K. pneumoniae microbial adhesion in a microfluidic flow cell, and inhibition of fibroblast cell adhesion from serum-based cell culture is shown. Effective functionalization of the coating is demonstrated by directing fibroblast adhesion to polymer surfaces activated with an RGD peptide. Batch-to-batch reproducibility data are included. The in situ cross-linked PEG-based coating chemistry is unique in its formulation, and its surface properties are attractive for a broad range of in vitro bioassay applications.

4.
Anal Chem ; 78(10): 3316-25, 2006 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-16689532

RESUMEN

Self-assembly of thiol-terminated single-stranded DNA (HS-ssDNA) on gold has served as an important model system for DNA immobilization at surfaces. Here, we report a detailed study of the surface composition and structure of mixed self-assembled DNA monolayers containing a short alkylthiol surface diluent [11-mercapto-1-undecanol (MCU)] on gold supports. These mixed DNA monolayers were studied with X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure spectroscopy (NEXAFS), and fluorescence intensity measurements. XPS results on sequentially adsorbed DNA/MCU monolayers on gold indicated that adsorbed MCU molecules first incorporate into the HS-ssDNA monolayer and, upon longer MCU exposures, displace adsorbed HS-ssDNA molecules from the surface. Thus, HS-ssDNA surface coverage steadily decreased with MCU exposure time. Polarization-dependent NEXAFS and fluorescence results both show changes in signals consistent with changes in DNA orientation after only 30 min of MCU exposure. NEXAFS polarization dependence (followed by monitoring the N 1s --> pi* transition) of the mixed DNA monolayers indicated that the DNA nucleotide base ring structures are oriented more parallel to the gold surface compared to DNA bases in pure HS-ssDNA monolayers. This indicates that HS-ssDNA oligomers reorient toward a more-upright position upon MCU incorporation. Fluorescence intensity results using end-labeled DNA probes on gold show little observable fluorescence on pure HS-ssDNA monolayers, likely due to substrate quenching effects between the fluorophore and the gold. MCU diluent incorporation into HS-ssDNA monolayers initially increases DNA fluorescence signal by densifying the chemisorbed monolayer, prompting an upright orientation of the DNA, and moving the terminal fluorophore away from the substrate. Immobilized DNA probe density and DNA target hybridization in these mixed DNA monolayers, as well as effects of MCU diluent on DNA hybridization in complex milieu (i.e., serum) were characterized by surface plasmon resonance (SPR) and (32)P-radiometric assays and reported in a related study (Gong, P.; Lee, C.-Y.; Gamble, L. J.; Castner, D. G.; Grainger, D. W. Anal. Chem. 2006, 78, 3326-3334.).


Asunto(s)
Alcanos/química , ADN/química , Colorantes Fluorescentes/química , Oro/química , Análisis Espectral/métodos , Compuestos de Sulfhidrilo/química , Rayos X
5.
Anal Chem ; 78(7): 2342-51, 2006 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-16579618

RESUMEN

To establish a quantitative, corroborative understanding of observed correlations between immobilized probe DNA density on microarray surfaces and target hybridization efficiency in biological samples, we have characterized amine-terminated, single-stranded DNA probes attached to amine-reactive commercial microarray slides and complementary DNA target hybridization using fluorescence imaging, X-ray photoelectron spectroscopy (XPS) and 32P-radiometric assays. Importantly, we have reproduced DNA probe microarray immobilization densities in macroscopic spotted dimensions using high ionic strength, high-concentration DNA probe solutions to permit direct XPS surface analysis of DNA surface chemistry with good reliability and reproducibility. Target capture hybridization efficiency with complementary DNA exhibited an optimum value at intermediate DNA probe immobilization densities. The macroscopic array model provides a new platform for the study of DNA surface chemistry using highly sensitive, quantitative surface analytical techniques (e.g., XPS, ToF-SIMS). Sensitive 32P-DNA radiometric density measurements were calibrated with more routine XPS DNA signals, facilitating future routine DNA density determinations without the use of a hazardous radioactive assay. The objective is to provide new insight into different surface chemistry influences on immobilized DNA probe environments that affect target capture efficiency from solution to improve microarray assay performance.


Asunto(s)
Aminas/química , Materiales Biocompatibles/química , Técnicas Biosensibles/métodos , Sondas de ADN , ADN/análisis , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Técnicas Biosensibles/instrumentación , ADN de Cadena Simple/química , Aumento de la Imagen , Microscopía Fluorescente , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Radiometría , Sensibilidad y Especificidad , Espectrometría por Rayos X , Propiedades de Superficie
6.
J Biomed Mater Res A ; 75(4): 855-69, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16121356

RESUMEN

Polystyrene surfaces grafted with a nonfouling interfacial interpenetrating polymer network (IPN) of poly(acrylamide-co-ethylene glycol/acrylic acid) [p(AAm-co-EG/AAc)] were modified with several peptide ligands adapted from bone sialoprotein (BSP). IPNs were modified with both single ligands and ligand blends to study the correlation between a simple metric, ligand-receptor adhesion strength, and the extent of matrix mineralization for osteoblast like cells (rat calvarial osteoblasts). The ligands studied included RGD cell-binding [CGGNGEPRGDTYRAY (l-RGD), CGGEPRGDTYRA (s2-RGD), CGPRGDTYG (lc-RGD), cyclic(CGPRGDTYG) (c-RGD), and CGGPRGDT (s-RGD)], heparin binding (CGGFHRRIKA), and collagen binding (CGGDGEAG) peptides, with the appropriate controls. Adhesion strength scaled with ligand density (1-20 pmol/cm(2)) and was dependent on ligand type with the following trend: l-RGD > s2-RGD approximately c-RGD >> s-RGD approximately lc-RGD >>> FHRRIKA approximately DGEA. Independent of ligand density, % matrix mineralization varied with ligand type resulting in the following trend: lc-RGD > s2-RGD > l-RGD approximately c-RGD >> s-RGD >>> FHRRIKA. The Tyr (Y) residue immediately following the RGD cell-binding domain proved to be critical for stable cell proliferation and mineralization, since removal of this residue resulted in erratic cell attachment and mineralization behavior. The minimum BSP sequence necessary for strong adhesion and extensive mineralization was CGGEPRGDTYRA; the minimal sequence suitable for extensive mineralization but lacking strong adhesion was CGPRGDTYG. The cyclic peptide (c-RGD) had much greater adhesion strength compared to its linear counterpart (lc-RGD). The calculated characteristic adhesion strength (F(70)) obtained using a centrifuge adhesion assay proved to be a poor metric for predicting % mineralized area; however, in general, surfaces possessing a F(70) > 100g promoted extensive matrix mineralization. Percent mineralization and number of mineralized nodules scaled with number of cells seeded suggesting a critical dependence on the initial number of osteoprogenitors in culture. This study demonstrates matrix mineralization dependence on ligand type, ligand density, and adhesion strength. The high-throughput character of these surfaces allowed efficient investigation of multiple ligands at multiple densities providing an excellent tool for studying ligand-receptor interactions under normal cell culture conditions with serum present.


Asunto(s)
Proliferación Celular , Matriz Extracelular/metabolismo , Oligopéptidos/fisiología , Osteoblastos/fisiología , Animales , Materiales Biocompatibles , Adhesión Celular/fisiología , Células Cultivadas , Ligandos , Ratas , Cráneo/citología
7.
Biomaterials ; 26(34): 6897-905, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16045984

RESUMEN

A simple fluorescence based characterization method was developed to assess ligand density on peptide-modified biomaterials. The method exploits the exquisite sensitivity of proteolysis for the purpose of liberating a fluorescently labeled probe fragment from an immobilized peptide. The released fragment can then be detected in solution using high-throughput fluorometry. In silico screening tools identified the enzyme chymotrypsin as a promising candidate for releasing a detectable probe fragment from the fluorescently labeled peptide, Ac-CGGNGEPRGDTYRAYK(FITC)GG-NH(2). After chymotrypsin digestion of the peptide in solution was first characterized using mass spectrometry and HPLC, a basic enzyme mediated release protocol was developed and implemented to generate peptide-binding isotherms on various peptide-modified biomaterials. The new method is sensitive, has good signal-to-noise ratio (S/N), and is easily standardized. Furthermore, the technique can be applied independent of material chemistry and geometry, making it a suitable alternative to radiolabeling for a wide range of biomaterial applications.


Asunto(s)
Materiales Biocompatibles Revestidos/análisis , Materiales Biocompatibles Revestidos/química , Ensayo de Materiales/métodos , Péptidos/análisis , Péptidos/química , Espectrometría de Fluorescencia/métodos , Sitios de Unión , Colorantes Fluorescentes , Ligandos , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...