Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
N Engl J Med ; 389(23): 2140-2150, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38055252

RESUMEN

BACKGROUND: Janus kinase (JAK) inhibitors, including baricitinib, block cytokine signaling and are effective disease-modifying treatments for several autoimmune diseases. Whether baricitinib preserves ß-cell function in type 1 diabetes is unclear. METHODS: In this phase 2, double-blind, randomized, placebo-controlled trial, we assigned patients with type 1 diabetes diagnosed during the previous 100 days to receive baricitinib (4 mg once per day) or matched placebo orally for 48 weeks. The primary outcome was the mean C-peptide level, determined from the area under the concentration-time curve, during a 2-hour mixed-meal tolerance test at week 48. Secondary outcomes included the change from baseline in the glycated hemoglobin level, the daily insulin dose, and measures of glycemic control assessed with the use of continuous glucose monitoring. RESULTS: A total of 91 patients received baricitinib (60 patients) or placebo (31 patients). The median of the mixed-meal-stimulated mean C-peptide level at week 48 was 0.65 nmol per liter per minute (interquartile range, 0.31 to 0.82) in the baricitinib group and 0.43 nmol per liter per minute (interquartile range, 0.13 to 0.63) in the placebo group (P = 0.001). The mean daily insulin dose at 48 weeks was 0.41 U per kilogram of body weight per day (95% confidence interval [CI], 0.35 to 0.48) in the baricitinib group and 0.52 U per kilogram per day (95% CI, 0.44 to 0.60) in the placebo group. The levels of glycated hemoglobin were similar in the two trial groups. However, the mean coefficient of variation of the glucose level at 48 weeks, as measured by continuous glucose monitoring, was 29.6% (95% CI, 27.8 to 31.3) in the baricitinib group and 33.8% (95% CI, 31.5 to 36.2) in the placebo group. The frequency and severity of adverse events were similar in the two trial groups, and no serious adverse events were attributed to baricitinib or placebo. CONCLUSIONS: In patients with type 1 diabetes of recent onset, daily treatment with baricitinib over 48 weeks appeared to preserve ß-cell function as estimated by the mixed-meal-stimulated mean C-peptide level. (Funded by JDRF International and others; BANDIT Australian New Zealand Clinical Trials Registry number, ACTRN12620000239965.).


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Inhibidores de las Cinasas Janus , Humanos , Australia , Glucemia/análisis , Automonitorización de la Glucosa Sanguínea , Péptido C/sangre , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Hemoglobina Glucada/análisis , Insulina/uso terapéutico , Inhibidores de las Cinasas Janus/efectos adversos , Inhibidores de las Cinasas Janus/farmacología , Inhibidores de las Cinasas Janus/uso terapéutico , Células Secretoras de Insulina/efectos de los fármacos , Método Doble Ciego
2.
Sci Rep ; 13(1): 5506, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016052

RESUMEN

Epigenetic features such as DNA accessibility dictate transcriptional regulation in a cell type- and cell state- specific manner, and mapping this in health vs. disease in clinically relevant material is opening the door to new mechanistic insights and new targets for therapy. Assay for Transposase Accessible Chromatin Sequencing (ATAC-seq) allows chromatin accessibility profiling from low cell input, making it tractable on rare cell populations, such as regulatory T (Treg) cells. However, little is known about the compatibility of the assay with cryopreserved rare cell populations. Here we demonstrate the robustness of an ATAC-seq protocol comparing primary Treg cells recovered from fresh or cryopreserved PBMC samples, in the steady state and in response to stimulation. We extend this method to explore the feasibility of conducting simultaneous quantitation of chromatin accessibility and transcriptome from a single aliquot of 50,000 cryopreserved Treg cells. Profiling of chromatin accessibility and gene expression in parallel within the same pool of cells controls for cellular heterogeneity and is particularly beneficial when constrained by limited input material. Overall, we observed a high correlation of accessibility patterns and transcription factor dynamics between fresh and cryopreserved samples. Furthermore, highly similar transcriptomic profiles were obtained from whole cells and from the supernatants recovered from ATAC-seq reactions. We highlight the feasibility of applying these techniques to profile the epigenomic landscape of cells recovered from cryopreservation biorepositories.


Asunto(s)
Cromatina , Linfocitos T Reguladores , Humanos , Cromatina/genética , Leucocitos Mononucleares , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Transcriptoma
3.
Diabetes ; 71(3): 566-577, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35007320

RESUMEN

Type 1 diabetes in children is heralded by a preclinical phase defined by circulating autoantibodies to pancreatic islet antigens. How islet autoimmunity is initiated and then progresses to clinical diabetes remains poorly understood. Only one study has reported gene expression in specific immune cells of children at risk associated with progression to islet autoimmunity. We analyzed gene expression with RNA sequencing in CD4+ and CD8+ T cells, natural killer (NK) cells, and B cells, and chromatin accessibility by assay for transposase-accessible chromatin sequencing (ATAC-seq) in CD4+ T cells, in five genetically at risk children with islet autoantibodies who progressed to diabetes over a median of 3 years ("progressors") compared with five children matched for sex, age, and HLA-DR who had not progressed ("nonprogressors"). In progressors, differentially expressed genes (DEGs) were largely confined to CD4+ T cells and enriched for cytotoxicity-related genes/pathways. Several top-ranked DEGs were validated in a semi-independent cohort of 13 progressors and 11 nonprogressors. Flow cytometry confirmed that progression was associated with expansion of CD4+ cells with a cytotoxic phenotype. By ATAC-seq, progression was associated with reconfiguration of regulatory chromatin regions in CD4+ cells, some linked to differentially expressed cytotoxicity-related genes. Our findings suggest that cytotoxic CD4+ T cells play a role in promoting progression to type 1 diabetes.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Cromatina/química , Citotoxicidad Inmunológica/genética , Diabetes Mellitus Tipo 1/inmunología , Progresión de la Enfermedad , Regulación de la Expresión Génica , Adolescente , Autoinmunidad/genética , Linfocitos B/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/ultraestructura , Linfocitos T CD8-positivos/metabolismo , Niño , Preescolar , Diabetes Mellitus Tipo 1/genética , Predisposición Genética a la Enfermedad , Humanos , Islotes Pancreáticos/inmunología , Células Asesinas Naturales/metabolismo , Análisis de Secuencia de ARN
4.
Pediatr Diabetes ; 22(3): 425-433, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33470492

RESUMEN

AIM: We aimed to characterize associations between diet and the gut microbiome and short chain fatty acid (SCFA) products in youth with islet autoimmunity or type 1 diabetes (IA/T1D) in comparison with controls. RESEARCH DESIGN AND METHODS: Eighty participants (25 diagnosed with T1D, 17 with confirmed IA, 38 sibling or unrelated controls) from the Australian T1D Gut Study cohort were studied (median [IQR] age 11.7 [8.9, 14.0] years, 43% female). A Food Frequency Questionnaire characterized daily macronutrient intake over the preceding 6 months. Plasma and fecal SCFA were measured by gas chromatography; gut microbiome composition and diversity by 16S rRNA gene sequencing. RESULTS: A 10 g increase in daily carbohydrate intake associated with higher plasma acetate in IA/T1D (adjusted estimate +5.2 (95% CI 1.1, 9.2) µmol/L p = 0.01) and controls (adjusted estimate +4.1 [95% CI 1.7, 8.5] µmol/L p = 0.04). A 5 g increase in total fat intake associated with lower plasma acetate in IA/T1D and controls. A 5% increase in noncore (junk) food intake associated with reduced richness (adjusted estimate -4.09 [95%CI -7.83, -0.35] p = .03) and evenness (-1.25 [95% CI -2.00, -0.49] p < 0.01) of the gut microbiome in IA/T1D. Fiber intake associated with community structure of the microbiome in IA/T1D. CONCLUSIONS: Modest increments in carbohydrate and fat intake associated with plasma acetate in all youth. Increased junk food intake associated with reduced diversity of the gut microbiome in IA/T1D alone. These associations with the gut microbiome in IA/T1D support future efforts to promote SCFA by using dietary interventions.


Asunto(s)
Autoinmunidad/fisiología , Diabetes Mellitus Tipo 1/metabolismo , Dieta , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal , Islotes Pancreáticos/inmunología , Adolescente , Estudios de Casos y Controles , Niño , Estudios Transversales , Diabetes Mellitus Tipo 1/complicaciones , Femenino , Humanos , Masculino , Encuestas y Cuestionarios
5.
Pediatr Diabetes ; 20(5): 574-583, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31081243

RESUMEN

AIMS/HYPOTHESIS: To investigate the longitudinal relationship between the gut microbiome, circulating short chain fatty acids (SCFAs) and intestinal permeability in children with islet autoimmunity or type 1 diabetes and controls. METHODS: We analyzed the gut bacterial microbiome, plasma SCFAs, small intestinal permeability and dietary intake in 47 children with islet autoimmunity or recent-onset type 1 diabetes and in 41 unrelated or sibling controls over a median (range) of 13 (2-34) months follow-up. RESULTS: Children with multiple islet autoantibodies (≥2 IA) or type 1 diabetes had gut microbiome dysbiosis. Anti-inflammatory Prevotella and Butyricimonas genera were less abundant and these changes were not explained by differences in diet. Small intestinal permeability measured by blood lactulose:rhamnose ratio was higher in type 1 diabetes. Children with ≥2 IA who progressed to type 1 diabetes (progressors), compared to those who did not progress, had higher intestinal permeability (mean [SE] difference +5.14 [2.0], 95% confidence interval [CI] 1.21, 9.07, P = .006), lower within-sample (alpha) microbial diversity (31.3 [11.2], 95% CI 9.3, 53.3, P = .005), and lower abundance of SCFA-producing bacteria. Alpha diversity (observed richness) correlated with plasma acetate levels in all groups combined (regression coefficient [SE] 0.57 [0.21], 95% CI 0.15, 0.99 P = .008). CONCLUSIONS/INTERPRETATION: Children with ≥2 IA who progress to diabetes, like those with recent-onset diabetes, have gut microbiome dysbiosis associated with increased intestinal permeability. Interventions that expand gut microbial diversity, in particular SCFA-producing bacteria, may have a role to decrease progression to diabetes in children at-risk.


Asunto(s)
Diabetes Mellitus Tipo 1/microbiología , Disbiosis/inmunología , Ácidos Grasos Volátiles/sangre , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Adolescente , Autoinmunidad , Niño , Preescolar , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/inmunología , Femenino , Humanos , Islotes Pancreáticos/inmunología , Masculino , Permeabilidad , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...