Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Trends Cell Biol ; 33(3): 175-178, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36481234
3.
Cancer Res ; 80(20): 4565-4577, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060170

RESUMEN

Melanomas harboring BRAF mutations can be treated with BRAF inhibitors (BRAFi), but responses are varied and tumor recurrence is inevitable. Here we used an integrative approach of experimentation and mathematical flux balance analyses in BRAF-mutated melanoma cells to discover that elevated antioxidant capacity is linked to BRAFi sensitivity in melanoma cells. High levels of antioxidant metabolites in cells with reduced BRAFi sensitivity confirmed this conclusion. By extending our analyses to other melanoma subtypes in The Cancer Genome Atlas, we predict that elevated redox capacity is a general feature of melanomas, not previously observed. We propose that redox vulnerabilities could be exploited for therapeutic benefits and identify unsuspected combination targets to enhance the effects of BRAFi in any melanoma, regardless of mutational status. SIGNIFICANCE: An integrative bioinformatics, flux balance analysis, and experimental approach identify targetable redox vulnerabilities and show the potential for modulation of cancer antioxidant defense to augment the benefits of existing therapies in melanoma.


Asunto(s)
Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Antioxidantes/metabolismo , Biología Computacional/métodos , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Inhibidores Enzimáticos/farmacología , Regulación Neoplásica de la Expresión Génica , Glutatión/metabolismo , Humanos , NADP/metabolismo , NADPH Oxidasa 5/genética , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/genética , Especies Reactivas de Oxígeno/metabolismo
4.
Front Oncol ; 10: 1426, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32923395

RESUMEN

Cancer cells adjust their metabolic profiles to evade treatment. Metabolic adaptation is complex and hence better understood by an integrated theoretical-experimental approach. Using a minimal kinetic model, we predicted a previously undescribed Low/Low (L/L) phenotype, characterized by low oxidative phosphorylation (OXPHOS) and low glycolysis. Here, we report that L/L metabolism is observed in BRAF-mutated melanoma cells that enter a drug-tolerant "idling state" upon long-term MAPK inhibition (MAPKi). Consistently, using publicly available RNA-sequencing data of both cell lines and patient samples, we show that melanoma cells decrease their glycolysis and/or OXPHOS activity upon MAPKi and converge toward the L/L phenotype. L/L metabolism is unfavorable for tumor growth, yet supports successful cell division at ~50% rate. Thus, L/L drug-tolerant idling cells are a reservoir for accumulating mutations responsible for relapse, and it should be considered as a target subpopulation for improving MAPKi outcomes in melanoma treatment.

5.
Toxicol Sci ; 176(2): 446-459, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492146

RESUMEN

Manganese (Mn) is an essential metal, but excessive exposures have been well-documented to culminate in neurotoxicity. Curiously, the precise mechanisms of Mn neurotoxicity are still unknown. One hypothesis suggests that Mn exerts its toxicity by inhibiting mitochondrial function, which then (if exposure levels are high and long enough) leads to cell death. Here, we used a Huntington's disease cell model with known differential sensitivities to manganese-STHdhQ7/Q7 and STHdhQ111/Q111 cells-to examine the effects of acute Mn exposure on mitochondrial function. We determined toxicity thresholds for each cell line using both changes in cell number and caspase-3/7 activation. We used a range of acute Mn exposures (0-300 µM), both above and below the cytotoxic threshold, to evaluate mitochondria-associated metabolic balance, mitochondrial respiration, and substrate dependence. In both cell lines, we observed no effect on markers of mitochondrial function at subtoxic Mn exposures (below detectable levels of cell death), yet at supratoxic exposures (above detectable levels of cell death) mitochondrial function significantly declined. We validated these findings in primary striatal neurons. In cell lines, we further observed that subtoxic Mn concentrations do not affect glycolytic function or major intracellular metabolite quantities. These data suggest that in this system, Mn exposure impairs mitochondrial function only at concentrations coincident with or above the initiation of cell death and is not consistent with the hypothesis that mitochondrial dysfunction precedes or induces Mn cytotoxicity.


Asunto(s)
Manganeso , Mitocondrias/patología , Neuronas/efectos de los fármacos , Línea Celular , Cuerpo Estriado/citología , Humanos , Enfermedad de Huntington/patología , Manganeso/toxicidad
6.
Cell Syst ; 8(2): 97-108.e16, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30797775

RESUMEN

Two goals motivate treating diseases with drug combinations: reduce off-target toxicity by minimizing doses (synergistic potency) and improve outcomes by escalating effect (synergistic efficacy). Established drug synergy frameworks obscure such distinction, failing to harness the potential of modern chemical libraries. We therefore developed multi-dimensional synergy of combinations (MuSyC), a formalism based on a generalized, multi-dimensional Hill equation, which decouples synergistic potency and efficacy. In mutant-EGFR-driven lung cancer, MuSyC reveals that combining a mutant-EGFR inhibitor with inhibitors of other kinases may result only in synergistic potency, whereas synergistic efficacy can be achieved by co-targeting mutant-EGFR and epigenetic regulation or microtubule polymerization. In mutant-BRAF melanoma, MuSyC determines whether a molecular correlate of BRAFi insensitivity alters a BRAF inhibitor's potency, efficacy, or both. These findings showcase MuSyC's potential to transform the enterprise of drug-combination screens by precisely guiding translation of combinations toward dose reduction, improved efficacy, or both.


Asunto(s)
Combinación de Medicamentos , Sinergismo Farmacológico , Melanoma/tratamiento farmacológico , Humanos
7.
Biophys J ; 114(6): 1499-1511, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29590606

RESUMEN

Targeted therapy is an effective standard of care in BRAF-mutated malignant melanoma. However, the duration of tumor remission varies unpredictably among patients, and relapse is almost inevitable. Here, we examine the responses of several BRAF-mutated melanoma cell lines (including isogenic subclones) to BRAF inhibitors. We observe complex response dynamics across cell lines, with short-term responses (<100 h) varying from cell line to cell line. In the long term, however, we observe equilibration of all drug-treated populations into a nonquiescent state characterized by a balanced rate of death and division, which we term the "idling" state, and to our knowledge, this state has not been previously reported. Using mathematical modeling, we propose that the observed population-level dynamics are the result of cells transitioning between basins of attraction within a drug-modified phenotypic landscape. Each basin is associated with a drug-induced proliferation rate, a recently introduced metric of an antiproliferative drug effect. The idling population state represents a new dynamic equilibrium in which cells are distributed across the landscape such that the population achieves zero net growth. By fitting our model to experimental drug-response data, we infer the phenotypic landscapes of all considered melanoma cell lines and provide a unifying view of how BRAF-mutated melanomas respond to BRAF inhibition. We hypothesize that the residual disease observed in patients after targeted therapy is composed of a significant number of idling cells. Thus, defining molecular determinants of the phenotypic landscape that idling populations occupy may lead to "targeted landscaping" therapies based on rational modification of the landscape to favor basins with greater drug susceptibility.


Asunto(s)
Melanoma/tratamiento farmacológico , Melanoma/genética , Terapia Molecular Dirigida , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Epigénesis Genética/efectos de los fármacos , Humanos , Melanoma/patología
8.
Sci Rep ; 7: 42604, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28205616

RESUMEN

Dysregulated metabolism can broadly affect therapy resistance by influencing compensatory signaling and expanding proliferation. Given many BRAF-mutated melanoma patients experience disease progression with targeted BRAF inhibitors, we hypothesized therapeutic response is related to tumor metabolic phenotype, and that altering tumor metabolism could change therapeutic outcome. We demonstrated the proliferative kinetics of BRAF-mutated melanoma cells treated with the BRAF inhibitor PLX4720 fall along a spectrum of sensitivity, providing a model system to study the interplay of metabolism and drug sensitivity. We discovered an inverse relationship between glucose availability and sensitivity to BRAF inhibition through characterization of metabolic phenotypes using nearly a dozen metabolic parameters in Principle Component Analysis. Subsequently, we generated rho0 variants that lacked functional mitochondrial respiration and increased glycolytic metabolism. The rho0 cell lines exhibited increased sensitivity to PLX4720 compared to the respiration-competent parental lines. Finally, we utilized the FDA-approved antiretroviral drug zalcitabine to suppress mitochondrial respiration and to force glycolysis in our cell line panel, resulting in increased PLX4720 sensitivity via shifts in EC50 and Hill slope metrics. Our data suggest that forcing tumor glycolysis in melanoma using zalcitabine or other similar approaches may be an adjunct to increase the efficacy of targeted BRAF therapy.


Asunto(s)
Antineoplásicos/farmacología , Melanoma/genética , Melanoma/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Glucosa/metabolismo , Glucólisis , Humanos , Indoles/farmacología , Indoles/uso terapéutico , Melanoma/tratamiento farmacológico , Terapia Molecular Dirigida , Oncogenes , Variantes Farmacogenómicas , Fenotipo , Inhibidores de Proteínas Quinasas/uso terapéutico , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Resultado del Tratamiento
9.
Nat Methods ; 13(6): 497-500, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27135974

RESUMEN

In vitro cell proliferation assays are widely used in pharmacology, molecular biology, and drug discovery. Using theoretical modeling and experimentation, we show that current metrics of antiproliferative small molecule effect suffer from time-dependent bias, leading to inaccurate assessments of parameters such as drug potency and efficacy. We propose the drug-induced proliferation (DIP) rate, the slope of the line on a plot of cell population doublings versus time, as an alternative, time-independent metric.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Descubrimiento de Drogas/métodos , Modelos Teóricos , Biología Molecular/métodos , Bibliotecas de Moléculas Pequeñas/farmacología , Línea Celular Tumoral , Simulación por Computador , Relación Dosis-Respuesta a Droga , Humanos , Microscopía Fluorescente , Sensibilidad y Especificidad , Bibliotecas de Moléculas Pequeñas/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...