Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38895321

RESUMEN

Glaucoma is a leading cause of irreversible blindness worldwide. Toll-like receptor 4 (TLR4) is a pattern-recognition transmembrane receptor that induces neuroinflammatory processes in response to injury. Tlr4 is highly expressed in ocular tissues and is known to modulate inflammatory processes in both anterior and posterior segment tissues. TLR4 activation can lead to mitochondrial dysfunction and metabolic deficits in inflammatory disorders. Due to its effects on inflammation and metabolism, TLR4 is a candidate to participate in glaucoma pathogenesis. It has been suggested as a therapeutic target based on studies using acute models, such as experimentally raising IOP to ischemia-inducing levels. Nevertheless, its role in chronic glaucoma needs further evaluation. In the current study, we investigated the role of TLR4 in an inherited mouse model of chronic glaucoma, DBA/2J. To do this, we analyzed the effect of Tlr4 knockout (Tlr4 -/-) on glaucoma-associated phenotypes in DBA/2J mice. Our studies found no significant differences in intraocular pressure, iris disease, or glaucomatous progression in Tlr4 -/- compared to Tlr4 +/+ DBA/2J mice. These data do not identify a role for TLR4 in this chronic glaucoma, but further research is warranted to understand its role in other glaucoma models and different genetic contexts.

2.
Nat Commun ; 14(1): 4481, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491352

RESUMEN

Inflammation in response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection drives severity of coronavirus disease 2019 (COVID-19) and is influenced by host genetics. To understand mechanisms of inflammation, animal models that reflect genetic diversity and clinical outcomes observed in humans are needed. We report a mouse panel comprising the genetically diverse Collaborative Cross (CC) founder strains crossed to human ACE2 transgenic mice (K18-hACE2) that confers susceptibility to SARS-CoV-2. Infection of CC x K18-hACE2 resulted in a spectrum of survival, viral replication kinetics, and immune profiles. Importantly, in contrast to the K18-hACE2 model, early type I interferon (IFN-I) and regulated proinflammatory responses were required for control of SARS-CoV-2 replication in PWK x K18-hACE2 mice that were highly resistant to disease. Thus, virus dynamics and inflammation observed in COVID-19 can be modeled in diverse mouse strains that provide a genetically tractable platform for understanding anti-coronavirus immunity.


Asunto(s)
COVID-19 , Interferón Tipo I , Humanos , Ratones , Animales , Citocinas , SARS-CoV-2 , Ratones Transgénicos , Inflamación/genética , Modelos Animales de Enfermedad , Pulmón
3.
Proc Natl Acad Sci U S A ; 117(52): 33619-33627, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318177

RESUMEN

Intraocular pressure-sensitive retinal ganglion cell degeneration is a hallmark of glaucoma, the leading cause of irreversible blindness. Here, we used RNA-sequencing and metabolomics to examine early glaucoma in DBA/2J mice. We demonstrate gene expression changes that significantly impact pathways mediating the metabolism and transport of glucose and pyruvate. Subsequent metabolic studies characterized an intraocular pressure (IOP)-dependent decline in retinal pyruvate levels coupled to dysregulated glucose metabolism prior to detectable optic nerve degeneration. Remarkably, retinal glucose levels were elevated 50-fold, consistent with decreased glycolysis but possibly including glycogen mobilization and other metabolic changes. Oral supplementation of the glycolytic product pyruvate strongly protected from neurodegeneration in both rat and mouse models of glaucoma. Investigating further, we detected mTOR activation at the mechanistic nexus of neurodegeneration and metabolism. Rapamycin-induced inhibition of mTOR robustly prevented glaucomatous neurodegeneration, supporting a damaging role for IOP-induced mTOR activation in perturbing metabolism and promoting glaucoma. Together, these findings support the use of treatments that limit metabolic disturbances and provide bioenergetic support. Such treatments provide a readily translatable strategy that warrants investigation in clinical trials.


Asunto(s)
Glaucoma/metabolismo , Glucosa/metabolismo , Neuroprotección , Fármacos Neuroprotectores/farmacología , Ácido Pirúvico/metabolismo , Sirolimus/farmacología , Animales , Modelos Animales de Enfermedad , Glaucoma/patología , Glaucoma/fisiopatología , Presión Intraocular/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Neuroprotección/efectos de los fármacos , Ratas Sprague-Dawley , Retina/efectos de los fármacos , Retina/patología , Retina/fisiopatología , Serina-Treonina Quinasas TOR/metabolismo
4.
J Neuroinflammation ; 17(1): 336, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33176797

RESUMEN

BACKGROUND: The risk of glaucoma increases significantly with age and exposure to elevated intraocular pressure, two factors linked with neuroinflammation. The complement cascade is a complex immune process with many bioactive end-products, including mediators of inflammation. Complement cascade activation has been shown in glaucoma patients and models of glaucoma. However, the function of complement-mediated inflammation in glaucoma is largely untested. Here, the complement peptide C3a receptor 1 was genetically disrupted in DBA/2J mice, an ocular hypertensive model of glaucoma, to test its contribution to neurodegeneration. METHODS: A null allele of C3ar1 was backcrossed into DBA/2J mice. Development of iris disease, ocular hypertension, optic nerve degeneration, retinal ganglion cell activity, loss of RGCs, and myeloid cell infiltration in C3ar1-deficient and sufficient DBA/2J mice were compared across multiple ages. RNA sequencing was performed on microglia from primary culture to determine global effects of C3ar1 on microglia gene expression. RESULTS: Deficiency in C3ar1 lowered the risk of degeneration in ocular hypertensive mice without affecting intraocular pressure elevation at 10.5 months of age. Differences were found in the percentage of mice affected, but not in individual characteristics of disease progression. The protective effect of C3ar1 deficiency was then overcome by additional aging and ocular hypertensive injury. Microglia and other myeloid-derived cells were the primary cells identified that express C3ar1. In the absence of C3ar1, microglial expression of genes associated with neuroinflammation and other immune functions were differentially expressed compared to WT. A network analysis of these data suggested that the IL10 signaling pathway is a major interaction partner of C3AR1 signaling in microglia. CONCLUSIONS: C3AR1 was identified as a damaging neuroinflammatory factor. These data help suggest complement activation causes glaucomatous neurodegeneration through multiple mechanisms, including inflammation. Microglia and infiltrating myeloid cells expressed high levels of C3ar1 and are the primary candidates to mediate its effects. C3AR1 appeared to be a major regulator of microglia reactivity and neuroinflammatory function due to its interaction with IL10 signaling and other immune related pathways. Targeting myeloid-derived cells and C3AR1 signaling with therapies is expected to add to or improve neuroprotective therapeutic strategies.


Asunto(s)
Degeneración Nerviosa/metabolismo , Nervio Óptico/metabolismo , Receptores de Complemento/biosíntesis , Receptores de Complemento/deficiencia , Animales , Animales Recién Nacidos , Células Cultivadas , Femenino , Redes Reguladoras de Genes/fisiología , Masculino , Ratones , Ratones Endogámicos DBA , Ratones Noqueados , Ratones Transgénicos , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Nervio Óptico/patología , Receptores de Complemento/genética
5.
Mol Brain ; 13(1): 81, 2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32450896

RESUMEN

Glaucoma is the leading cause of irreversible vision loss. Ocular hypertension is a major risk factor for glaucoma and recent work has demonstrated critical early neuroinflammatory insults occur in the optic nerve head following ocular hypertension. Microglia and infiltrating monocytes are likely candidates to drive these neuroinflammatory insults. However, the exact molecular identity / transcriptomic profile of microglia following ocular hypertensive insults is unknown. To elucidate the molecular identity of microglia after long-term exposure to ocular hypertension, we used a mouse model of glaucoma (DBA/2 J). We performed RNA-sequencing of microglia mRNA from the optic nerve head at a time point following ocular hypertensive insults, but preceding detectable neurodegeneration (with microglia identified as being CD45lo/CD11b+/CD11c-). Furthermore, RNA-sequencing was performed on optic nerve head microglia from mice treated with radiation therapy, a potent therapy preventing neuroinflammatory insults. Transcriptomic profiling of optic nerve head microglia mRNA identifies metabolic priming with marked changes in mitochondrial gene expression, and changes to phagocytosis, inflammatory, and sensome pathways. The data predict that many functions of microglia that help maintain tissue homeostasis are affected. Comparative analysis of these data with data from previously published whole optic nerve head tissue or monocyte-only samples from DBA/2 J mice demonstrate that many of the neuroinflammatory signatures in these data sets arise from infiltrating monocytes and not reactive microglia. Finally, our data demonstrate that prophylactic radiation therapy of DBA/2 J mice potently abolishes these microglia metabolic transcriptomic changes at the same time points. Together, our data provide a unique resource for the community to help drive further hypothesis generation and testing in glaucoma.


Asunto(s)
Regulación de la Expresión Génica , Homeostasis/genética , Microglía/metabolismo , Microglía/patología , Hipertensión Ocular/genética , Hipertensión Ocular/patología , Disco Óptico/metabolismo , Animales , Regulación hacia Abajo/genética , Femenino , Regulación de la Expresión Génica/efectos de la radiación , Homeostasis/efectos de la radiación , Presión Intraocular/genética , Presión Intraocular/efectos de la radiación , Ratones Endogámicos DBA , Microglía/efectos de la radiación , Monocitos/metabolismo , Monocitos/patología , Hipertensión Ocular/fisiopatología , Disco Óptico/patología , Disco Óptico/efectos de la radiación , Fagocitosis/genética , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma/genética , Regulación hacia Arriba/genética
6.
Mol Neurodegener ; 14(1): 6, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30670050

RESUMEN

BACKGROUND: Glaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells. Recent work in animal models suggests that a critical neuroinflammatory event damages retinal ganglion cell axons in the optic nerve head during ocular hypertensive injury. We previously demonstrated that monocyte-like cells enter the optic nerve head in an ocular hypertensive mouse model of glaucoma (DBA/2 J), but their roles, if any, in mediating axon damage remain unclear. METHODS: To understand the function of these infiltrating monocyte-like cells, we used RNA-sequencing to profile their transcriptomes. Based on their pro-inflammatory molecular signatures, we hypothesized and confirmed that monocyte-platelet interactions occur in glaucomatous tissue. Furthermore, to test monocyte function we used two approaches to inhibit their entry into the optic nerve head: (1) treatment with DS-SILY, a peptidoglycan that acts as a barrier to platelet adhesion to the vessel wall and to monocytes, and (2) genetic targeting of Itgam (CD11b, an immune cell receptor that enables immune cell extravasation). RESULTS: Monocyte specific RNA-sequencing identified novel neuroinflammatory pathways early in glaucoma pathogenesis. Targeting these processes pharmacologically (DS-SILY) or genetically (Itgam / CD11b knockout) reduced monocyte entry and provided neuroprotection in DBA/2 J eyes. CONCLUSIONS: These data demonstrate a key role of monocyte-like cell extravasation in glaucoma and demonstrate that modulating neuroinflammatory processes can significantly lessen optic nerve injury.


Asunto(s)
Glaucoma/patología , Monocitos/patología , Degeneración Nerviosa/patología , Animales , Quimiotaxis de Leucocito , Ratones , Nervio Óptico/patología
7.
Cell Death Dis ; 9(6): 705, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29899326

RESUMEN

The cJun N-terminal kinases (JNKs; JNK1, JNK2, and JNK3) promote degenerative processes after neuronal injury and in disease. JNK2 and JNK3 have been shown to promote retinal ganglion cell (RGC) death after optic nerve injury. In their absence, long-term survival of RGC somas is significantly increased after mechanical optic nerve injury. In glaucoma, because optic nerve damage is thought to be a major cause of RGC death, JNKs are an important potential target for therapeutic intervention. To assess the role of JNK2 and JNK3 in an ocular hypertensive model of glaucoma, null alleles of Jnk2 and Jnk3 were backcrossed into the DBA/2J (D2) mouse. JNK activation occurred in RGCs following increased intraocular pressure in D2 mice. However, deficiency of both Jnk2 and Jnk3 together did not lessen optic nerve damage or RGC death. These results differentiate the molecular pathways controlling cell death in ocular hypertensive glaucoma compared with mechanical optic nerve injury. It is further shown that JUN, a pro-death component of the JNK pathway in RGCs, can be activated in glaucoma in the absence of JNK2 and JNK3. This implicates JNK1 in glaucomatous RGC death. Unexpectedly, at younger ages, Jnk2-deficient mice were more likely to develop features of glaucomatous neurodegeneration than D2 mice expressing Jnk2. This appears to be due to a neuroprotective effect of JNK2 and not due to a change in intraocular pressure. The Jnk2-deficient context also unmasked a lesser role for Jnk3 in glaucoma. Jnk2 and Jnk3 double knockout mice had a modestly increased risk of neurodegeneration compared with mice only deficient in Jnk2. Overall, these findings are consistent with pleiotropic effects of JNK isoforms in glaucoma and suggest caution is warranted when using JNK inhibitors to treat chronic neurodegenerative conditions.


Asunto(s)
Glaucoma/enzimología , Glaucoma/patología , Proteína Quinasa 9 Activada por Mitógenos/deficiencia , Degeneración Nerviosa/enzimología , Degeneración Nerviosa/patología , Hipertensión Ocular/enzimología , Hipertensión Ocular/patología , Animales , Axones/metabolismo , Muerte Celular , Activación Enzimática , Regulación de la Expresión Génica , Glaucoma/fisiopatología , Presión Intraocular , Ratones Endogámicos DBA , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Degeneración Nerviosa/fisiopatología , Hipertensión Ocular/fisiopatología , Nervio Óptico/enzimología , Nervio Óptico/patología , Nervio Óptico/fisiopatología , Retina/enzimología , Retina/patología , Retina/fisiopatología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología
8.
Commun Integr Biol ; 11(1): e1356956, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29497468

RESUMEN

Nicotinamide adenine dinucleotide (NAD) is a key molecule in several cellular processes and is essential for healthy mitochondrial metabolism. We recently reported that mitochondrial dysfunction is among the very first changes to occur within retinal ganglion cells during initiation of glaucoma in DBA/2J mice. Furthermore, we demonstrated that an age-dependent decline of NAD contributes to mitochondrial dysfunction and vulnerability to glaucoma. The decrease in NAD renders retinal ganglion cells vulnerable to a metabolic crisis following periods of high intraocular pressure. Treating mice with the NAD precursor nicotinamide (the amide form of vitamin B3) inhibited many age- and high intraocular pressure- dependent changes with the highest tested dose decreasing the likelihood of developing glaucoma by ∼10-fold. In this communication, we present further evidence of the neuroprotective effects of nicotinamide against glaucoma in mice, including its prevention of optic nerve excavation and axon loss as assessed by histologic analysis and axon counting. We also show analyses of age- and intraocular pressure- dependent changes in transcripts of NAD producing enzymes within retinal ganglion cells and that nicotinamide treatment prevents these transcriptomic changes.

9.
J Glaucoma ; 26(12): 1161-1168, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28858158

RESUMEN

Mitochondrial dysfunction may be an important, if not essential, component of human glaucoma. Using transcriptomics followed by molecular and neurobiological techniques, we have recently demonstrated that mitochondrial dysfunction within retinal ganglion cells is an early feature in the DBA/2J mouse model of inherited glaucoma. Guided by these findings, we discovered that the retinal level of nicotinamide adenine dinucleotide (NAD, a key molecule for mitochondrial health) declines in an age-dependent manner. We hypothesized that this decline in NAD renders retinal ganglion cells susceptible to damage during periods of elevated intraocular pressure. To replete NAD levels in this glaucoma, we administered nicotinamide (the amide of vitamin B3). At the lowest dose tested, nicotinamide robustly protected from glaucoma (~70% of eyes had no detectable glaucomatous neurodegeneration). At this dose, nicotinamide had no influence on intraocular pressure and so its effect was neuroprotective. At the highest dose tested, 93% of eyes had no detectable glaucoma. This represents a ~10-fold decrease in the risk of developing glaucoma. At this dose, intraocular pressure still became elevated but there was a reduction in the degree of elevation showing an additional benefit. Thus, nicotinamide is unexpectedly potent at preventing this glaucoma and is an attractive option for glaucoma therapeutics. Our findings demonstrate the promise for both preventing and treating glaucoma by interventions that bolster metabolism during increasing age and during periods of elevated intraocular pressure. Nicotinamide prevents age-related declines in NAD (a decline that occurs in different genetic contexts and species). NAD precursors are reported to protect from a variety of neurodegenerative conditions. Thus, nicotinamide may provide a much needed neuroprotective treatment against human glaucoma. This manuscript summarizes human data implicating mitochondria in glaucoma, and argues for studies to further assess the safety and efficacy of nicotinamide in human glaucoma care.


Asunto(s)
Glaucoma/tratamiento farmacológico , Presión Intraocular/fisiología , Niacinamida/uso terapéutico , Enfermedades del Nervio Óptico , Animales , Glaucoma/complicaciones , Glaucoma/metabolismo , Humanos , Presión Intraocular/efectos de los fármacos , Enfermedades del Nervio Óptico/etiología , Enfermedades del Nervio Óptico/metabolismo , Enfermedades del Nervio Óptico/prevención & control , Complejo Vitamínico B/uso terapéutico
10.
Front Neurosci ; 11: 232, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28487632

RESUMEN

Glaucoma is a complex neurodegenerative disease characterized by progressive visual dysfunction leading to vision loss. Retinal ganglion cells are the primary affected neuronal population, with a critical insult damaging their axons in the optic nerve head. This insult is typically secondary to harmfully high levels of intraocular pressure (IOP). We have previously determined that early mitochondrial abnormalities within retinal ganglion cells lead to neuronal dysfunction, with age-related declines in NAD (NAD+ and NADH) rendering retinal ganglion cell mitochondria vulnerable to IOP-dependent stresses. The Wallerian degeneration slow allele, WldS , decreases the vulnerability of retinal ganglion cells in eyes with elevated IOP, but the exact mechanism(s) of protection from glaucoma are not determined. Here, we demonstrate that WldS increases retinal NAD levels. Coupled with nicotinamide administration (an NAD precursor), it robustly protects from glaucomatous neurodegeneration in a mouse model of glaucoma (94% of eyes having no glaucoma, more than WldS or nicotinamide alone). Importantly, nicotinamide and WldS protect somal, synaptic, and axonal compartments, prevent loss of anterograde axoplasmic transport, and protect from visual dysfunction as assessed by pattern electroretinogram. Boosting NAD production generally benefits major compartments of retinal ganglion cells, and may be of value in other complex, age-related, axonopathies where multiple neuronal compartments are ultimately affected.

11.
Proc Natl Acad Sci U S A ; 114(19): E3839-E3848, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28446616

RESUMEN

Various immune response pathways are altered during early, predegenerative stages of glaucoma; however, whether the early immune responses occur secondarily to or independently of neuronal dysfunction is unclear. To investigate this relationship, we used the Wlds allele, which protects from axon dysfunction. We demonstrate that DBA/2J.Wlds mice develop high intraocular pressure (IOP) but are protected from retinal ganglion cell (RGC) dysfunction and neuroglial changes that otherwise occur early in DBA/2J glaucoma. Despite this, immune pathways are still altered in DBA/2J.Wlds mice. This suggests that immune changes are not secondary to RGC dysfunction or altered neuroglial interactions, but may be directly induced by the increased strain imposed by high IOP. One early immune response following IOP elevation is up-regulation of complement C3 in astrocytes of DBA/2J and DBA/2J.Wlds mice. Unexpectedly, because the disruption of other complement components, such as C1Q, is protective in glaucoma, C3 deficiency significantly increased the number of DBA/2J eyes with nerve damage and RGC loss at an early time point after IOP elevation. Transcriptional profiling of C3-deficient cultured astrocytes implicated EGFR signaling as a hub in C3-dependent responses. Treatment with AG1478, an EGFR inhibitor, also significantly increased the number of DBA/2J eyes with glaucoma at the same early time point. These findings suggest that C3 protects from early glaucomatous damage, a process that may involve EGFR signaling and other immune responses in the optic nerve head. Therefore, therapies that target specific components of the complement cascade, rather than global inhibition, may be more applicable for treating human glaucoma.


Asunto(s)
Complemento C3/inmunología , Glaucoma/inmunología , Células Ganglionares de la Retina/inmunología , Regulación hacia Arriba/inmunología , Animales , Complemento C3/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/inmunología , Glaucoma/genética , Glaucoma/patología , Glaucoma/prevención & control , Presión Intraocular/inmunología , Ratones , Ratones Endogámicos DBA , Ratones Noqueados , Nervio Óptico/inmunología , Nervio Óptico/patología , Quinazolinas/farmacología , Células Ganglionares de la Retina/patología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/inmunología , Tirfostinos/farmacología
12.
Science ; 355(6326): 756-760, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28209901

RESUMEN

Glaucomas are neurodegenerative diseases that cause vision loss, especially in the elderly. The mechanisms initiating glaucoma and driving neuronal vulnerability during normal aging are unknown. Studying glaucoma-prone mice, we show that mitochondrial abnormalities are an early driver of neuronal dysfunction, occurring before detectable degeneration. Retinal levels of nicotinamide adenine dinucleotide (NAD+, a key molecule in energy and redox metabolism) decrease with age and render aging neurons vulnerable to disease-related insults. Oral administration of the NAD+ precursor nicotinamide (vitamin B3), and/or gene therapy (driving expression of Nmnat1, a key NAD+-producing enzyme), was protective both prophylactically and as an intervention. At the highest dose tested, 93% of eyes did not develop glaucoma. This supports therapeutic use of vitamin B3 in glaucoma and potentially other age-related neurodegenerations.


Asunto(s)
Envejecimiento/metabolismo , Glaucoma/prevención & control , Mitocondrias/efectos de los fármacos , NAD/deficiencia , Enfermedades Neurodegenerativas/prevención & control , Niacinamida/administración & dosificación , Envejecimiento/patología , Animales , Senescencia Celular , Terapia Genética , Glaucoma/patología , Ratones , Mitocondrias/patología , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Neuronas/patología , Niacinamida/metabolismo , Niacinamida/farmacología , Nicotinamida-Nucleótido Adenililtransferasa/genética , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología
13.
Sci Rep ; 6: 21568, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26888450

RESUMEN

Studies have assessed individual components of a western diet, but no study has assessed the long-term, cumulative effects of a western diet on aging and Alzheimer's disease (AD). Therefore, we have formulated the first western-style diet that mimics the fat, carbohydrate, protein, vitamin and mineral levels of western diets. This diet was fed to aging C57BL/6J (B6) mice to identify phenotypes that may increase susceptibility to AD, and to APP/PS1 mice, a mouse model of AD, to determine the effects of the diet in AD. Astrocytosis and microglia/monocyte activation were dramatically increased in response to diet and was further increased in APP/PS1 mice fed the western diet. This increase in glial responses was associated with increased plaque burden in the hippocampus. Interestingly, given recent studies highlighting the importance of TREM2 in microglia/monocytes in AD susceptibility and progression, B6 and APP/PS1 mice fed the western diet showed significant increases TREM2+ microglia/monocytes. Therefore, an increase in TREM2+ microglia/monocytes may underlie the increased risk from a western diet to age-related neurodegenerative diseases such as Alzheimer's disease. This study lays the foundation to fully investigate the impact of a western diet on glial responses in aging and Alzheimer's disease.


Asunto(s)
Envejecimiento/metabolismo , Enfermedad de Alzheimer/metabolismo , Dieta Occidental/efectos adversos , Gliosis/metabolismo , Microglía/metabolismo , Envejecimiento/genética , Envejecimiento/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Modelos Animales de Enfermedad , Gliosis/genética , Gliosis/patología , Ratones , Ratones Transgénicos , Microglía/patología
14.
Exp Eye Res ; 141: 42-56, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26116903

RESUMEN

While all forms of glaucoma are characterized by a specific pattern of retinal ganglion cell death, they are clinically divided into several distinct subclasses, including normal tension glaucoma, primary open angle glaucoma, congenital glaucoma, and secondary glaucoma. For each type of glaucoma there are likely numerous molecular pathways that control susceptibility to the disease. Given this complexity, a single animal model will never precisely model all aspects of all the different types of human glaucoma. Therefore, multiple animal models have been utilized to study glaucoma but more are needed. Because of the powerful genetic tools available to use in the laboratory mouse, it has proven to be a highly useful mammalian system for studying the pathophysiology of human disease. The similarity between human and mouse eyes coupled with the ability to use a combination of advanced cell biological and genetic tools in mice have led to a large increase in the number of studies using mice to model specific glaucoma phenotypes. Over the last decade, numerous new mouse models and genetic tools have emerged, providing important insight into the cell biology and genetics of glaucoma. In this review, we describe available mouse genetic models that can be used to study glaucoma-relevant disease/pathobiology. Furthermore, we discuss how these models have been used to gain insights into ocular hypertension (a major risk factor for glaucoma) and glaucomatous retinal ganglion cell death. Finally, the potential for developing new mouse models and using advanced genetic tools and resources for studying glaucoma are discussed.


Asunto(s)
Glaucoma/genética , Presión Intraocular , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología
16.
Nat Genet ; 47(4): 387-92, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25706626

RESUMEN

Exfoliation syndrome (XFS) is the most common recognizable cause of open-angle glaucoma worldwide. To better understand the etiology of XFS, we conducted a genome-wide association study (GWAS) of 1,484 cases and 1,188 controls from Japan and followed up the most significant findings in a further 6,901 cases and 20,727 controls from 17 countries across 6 continents. We discovered a genome-wide significant association between a new locus (CACNA1A rs4926244) and increased susceptibility to XFS (odds ratio (OR) = 1.16, P = 3.36 × 10(-11)). Although we also confirmed overwhelming association at the LOXL1 locus, the key SNP marker (LOXL1 rs4886776) demonstrated allelic reversal depending on the ancestry group (Japanese: OR(A allele) = 9.87, P = 2.13 × 10(-217); non-Japanese: OR(A allele) = 0.49, P = 2.35 × 10(-31)). Our findings represent the first genetic locus outside of LOXL1 surpassing genome-wide significance for XFS and provide insight into the biology and pathogenesis of the disease.


Asunto(s)
Canales de Calcio/genética , Síndrome de Exfoliación/genética , Polimorfismo de Nucleótido Simple , Animales , Pueblo Asiatico/genética , Pueblo Asiatico/estadística & datos numéricos , Estudios de Casos y Controles , Mapeo Cromosómico , Síndrome de Exfoliación/epidemiología , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Glaucoma de Ángulo Abierto/epidemiología , Glaucoma de Ángulo Abierto/genética , Células HEK293 , Células HeLa , Humanos , Japón/epidemiología , Células MCF-7 , Ratones , Ratones Endogámicos C57BL , Células Tumorales Cultivadas
17.
J Glaucoma ; 23(8 Suppl 1): S68-72, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25275912

RESUMEN

At present, no animal models fully embody exfoliation syndrome or exfoliation glaucoma. Both genetic and environmental factors appear critical for disease manifestation, and both must be considered when generating animal models. Because mice provide a powerful mammalian platform for modeling complex disease, this paper focuses on mouse models of exfoliation syndrome and exfoliation glaucoma.


Asunto(s)
Modelos Animales de Enfermedad , Síndrome de Exfoliación/complicaciones , Glaucoma de Ángulo Abierto/complicaciones , Animales , Síndrome de Exfoliación/genética , Glaucoma de Ángulo Abierto/genética , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos
18.
Neurobiol Dis ; 69: 108-16, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24878510

RESUMEN

Injury to retinal ganglion cell (RGC) axons triggers rapid activation of Jun N-terminal kinase (JNK) signaling, a major prodeath pathway in injured RGCs. Of the multiple kinases that can activate JNK, dual leucine kinase (Dlk) is known to regulate both apoptosis and Wallerian degeneration triggered by axonal insult. Here we tested the importance of Dlk in regulating somal and axonal degeneration of RGCs following axonal injury. Removal of DLK from the developing optic cup did not grossly affect developmental RGC death or inner plexiform layer organization. In the adult, Dlk deficiency significantly delayed axonal-injury induced RGC death. The activation of JUN was also attenuated in Dlk deficient retinas. Dlk deficiency attenuated the activation of the somal pool of JNK but did not prevent activation of the axonal pool of JNK after axonal injury, indicating that JNK activation in different cellular compartments of an RGC following axonal injury is regulated by distinct upstream kinases. In contrast to its robust influence on somal degeneration, Dlk deficiency did not alter RGC axonal degeneration after axonal injury as assessed using physiological readouts of optic nerve function.


Asunto(s)
Axones/enzimología , Quinasas Quinasa Quinasa PAM/deficiencia , Traumatismos del Nervio Óptico/enzimología , Células Ganglionares de la Retina/enzimología , Degeneración Walleriana/enzimología , Animales , Axones/patología , Muerte Celular/fisiología , Supervivencia Celular/fisiología , Modelos Animales de Enfermedad , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Ratones Transgénicos , Traumatismos del Nervio Óptico/patología , Fosforilación/fisiología , Retina/enzimología , Retina/crecimiento & desarrollo , Retina/patología , Células Ganglionares de la Retina/patología , Transducción de Señal , Técnicas de Cultivo de Tejidos , Degeneración Walleriana/patología
19.
Exp Eye Res ; 112: 106-17, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23648575

RESUMEN

The AP1 family transcription factor JUN is an important molecule in the neuronal response to injury. In retinal ganglion cells (RGCs), JUN is upregulated soon after axonal injury and disrupting JUN activity delays RGC death. JUN is known to participate in the control of many different injury response pathways in neurons, including pathways controlling cell death and axonal regeneration. The role of JUN in regulating genes involved in cell death, ER stress, and regeneration was tested to determine the overall importance of JUN in regulating RGC response to axonal injury. Genes from each of these pathways were transcriptionally controlled following axonal injury and Jun deficiency altered the expression of many of these genes. The differentially expressed genes included, Atf3, Ddit3, Ecel1, Gadd45α, Gal, Hrk, Pten, Socs3, and Sprr1a. Two of these genes, Hrk and Atf3, were tested for importance in RGC death using null alleles of each gene. Disruption of the prodeath Bcl2 family member Hrk did not affect the rate or amount of RGC death after axonal trauma. Deficiency in the ATF/CREB family transcription factor Atf3 did lessen the amount of RGC death after injury, though it did not provide long term protection to RGCs. Since JUN's dimerization partner determines its transcriptional targets, the expression of several candidate AP1 family members were examined. Multiple AP1 family members were induced by axonal injury and had a different expression profile in Jun deficient retinas compared to wildtype retinas (Fosl1, Fosl2 and Jund). Overall, JUN appears to play a multifaceted role in regulating RGC response to axonal injury.


Asunto(s)
Apoptosis , Axones/patología , Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/genética , Proteínas Proto-Oncogénicas c-jun/fisiología , Células Ganglionares de la Retina/patología , Factor de Transcripción AP-1/genética , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Recuento de Células , Supervivencia Celular , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Compresión Nerviosa , Neuropéptidos/genética , Neuropéptidos/metabolismo , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/fisiopatología , Reacción en Cadena en Tiempo Real de la Polimerasa , Activación Transcripcional
20.
Sci Rep ; 2: 530, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22833783

RESUMEN

Axonal insult induces retinal ganglion cell (RGC) death through a BAX-dependent process. The pro-apoptotic Bcl-2 family member BIM is known to induce BAX activation. BIM expression increased in RGCs after axonal injury and its induction was dependent on JUN. Partial and complete Bim deficiency delayed RGC death after mechanical optic nerve injury. However, in a mouse model of glaucoma, DBA/2J mice, Bim deficiency did not prevent RGC death in eyes with severe optic nerve degeneration. In a subset of DBA/2J mice, Bim deficiency altered disease progression resulting in less severe nerve damage. Bim deficient mice exhibited altered optic nerve head morphology and significantly lessened intraocular pressure elevation. Thus, a decrease in axonal degeneration in Bim deficient DBA/2J mice may not be caused by a direct role of Bim in RGCs. These data suggest that BIM has multiple roles in glaucoma pathophysiology, potentially affecting susceptibility to glaucoma through several mechanisms.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Glaucoma/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Axones/metabolismo , Axones/patología , Proteína 11 Similar a Bcl2 , Caspasa 3/metabolismo , Muerte Celular/genética , Modelos Animales de Enfermedad , Activación Enzimática/genética , Femenino , Expresión Génica , Glaucoma/genética , Glaucoma/patología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos DBA , Ratones Noqueados , Morfogénesis/genética , Nervio Óptico/metabolismo , Nervio Óptico/patología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-jun/metabolismo , Retina/embriología , Retina/metabolismo , Retina/patología , Células Ganglionares de la Retina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...