Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Med Internet Res ; 25: e47094, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37526973

RESUMEN

BACKGROUND: Digital therapeutics (DTx), a class of software-based clinical interventions, are promising new technologies that can potentially prevent, manage, or treat a spectrum of medical disorders and diseases as well as deliver unprecedented portability for patients and scalability for health care providers. Their adoption and implementation were accelerated by the need for remote care during the COVID-19 pandemic, and awareness about their utility has rapidly grown among providers, payers, and regulators. Despite this, relatively little is known about the capacity of DTx to provide economic value in care. OBJECTIVE: This study aimed to systematically review and summarize the published evidence regarding the cost-effectiveness of clinical-grade mobile app-based DTx and explore the factors affecting such evaluations. METHODS: A systematic review of economic evaluations of clinical-grade mobile app-based DTx was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 guidelines. Major electronic databases, including PubMed, Cochrane Library, and Web of Science, were searched for eligible studies published from inception to October 28, 2022. Two independent reviewers evaluated the eligibility of all the retrieved articles for inclusion in the review. Methodological quality and risk of bias were assessed for each included study. RESULTS: A total of 18 studies were included in this review. Of the 18 studies, 7 (39%) were nonrandomized study-based economic evaluations, 6 (33%) were model-based evaluations, and 5 (28%) were randomized clinical trial-based evaluations. The DTx intervention subject to assessment was found to be cost-effective in 12 (67%) studies, cost saving in 5 (28%) studies, and cost-effective in 1 (6%) study in only 1 of the 3 countries where it was being deployed in the final study. Qualitative deficiencies in methodology and substantial potential for bias, including risks of performance bias and selection bias in participant recruitment, were identified in several included studies. CONCLUSIONS: This systematic review supports the thesis that DTx interventions offer potential economic benefits. However, DTx economic analyses conducted to date exhibit important methodological shortcomings that must be addressed in future evaluations to reduce the uncertainty surrounding the widespread adoption of DTx interventions. TRIAL REGISTRATION: PROSPERO International Prospective Register of Systematic Reviews CRD42022358616; https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022358616.


Asunto(s)
COVID-19 , Aplicaciones Móviles , Humanos , Análisis Costo-Beneficio , Pandemias , Ensayos Clínicos como Asunto
2.
Adv Ther (Weinh) ; 3(7): 2000034, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32838027

RESUMEN

In 2019/2020, the emergence of coronavirus disease 2019 (COVID-19) resulted in rapid increases in infection rates as well as patient mortality. Treatment options addressing COVID-19 included drug repurposing, investigational therapies such as remdesivir, and vaccine development. Combination therapy based on drug repurposing is among the most widely pursued of these efforts. Multi-drug regimens are traditionally designed by selecting drugs based on their mechanism of action. This is followed by dose-finding to achieve drug synergy. This approach is widely-used for drug development and repurposing. Realizing synergistic combinations, however, is a substantially different outcome compared to globally optimizing combination therapy, which realizes the best possible treatment outcome by a set of candidate therapies and doses toward a disease indication. To address this challenge, the results of Project IDentif.AI (Identifying Infectious Disease Combination Therapy with Artificial Intelligence) are reported. An AI-based platform is used to interrogate a massive 12 drug/dose parameter space, rapidly identifying actionable combination therapies that optimally inhibit A549 lung cell infection by vesicular stomatitis virus within three days of project start. Importantly, a sevenfold difference in efficacy is observed between the top-ranked combination being optimally and sub-optimally dosed, demonstrating the critical importance of ideal drug and dose identification. This platform is disease indication and disease mechanism-agnostic, and potentially applicable to the systematic N-of-1 and population-wide design of highly efficacious and tolerable clinical regimens. This work also discusses key factors ranging from healthcare economics to global health policy that may serve to drive the broader deployment of this platform to address COVID-19 and future pandemics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA