Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 39(9): 110892, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35649371

RESUMEN

Cortical layer 5 contains two major types of projection neuron known as IB (intrinsic bursting) cells that project sub-cortically and RS (regular spiking) cells that project between cortical areas. This study describes the plasticity properties of RS and IB cells in the mouse visual cortex during the critical period for ocular dominance plasticity. We find that RS neurons exhibit synaptic depression in response to both dark exposure (DE) and monocular deprivation (MD), and their homeostatic recovery from depression is dependent on TNF-α. In contrast, IB cells demonstrate opposite responses to DE and MD, potentiating to DE and depressing to MD. IB cells' potentiation depends on CaMKII-autophosphorylation and not TNF-α. IB cells show mature synaptic properties at the start of the critical period while RS cells mature during the critical period. Together with observations in somatosensory cortex, these results suggest that differences in RS and IB plasticity mechanisms are a general cortical property.


Asunto(s)
Plasticidad Neuronal , Corteza Visual , Animales , Predominio Ocular , Ratones , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Corteza Somatosensorial/fisiología , Corteza Visual/fisiología
2.
Transl Psychiatry ; 11(1): 135, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608504

RESUMEN

A balanced t(1;11) translocation that directly disrupts DISC1 is linked to schizophrenia and affective disorders. We previously showed that a mutant mouse, named Der1, recapitulates the effect of the translocation upon DISC1 expression. Here, RNAseq analysis of Der1 mouse brain tissue found enrichment for dysregulation of the same genes and molecular pathways as in neuron cultures generated previously from human t(1;11) translocation carriers via the induced pluripotent stem cell route. DISC1 disruption therefore apparently accounts for a substantial proportion of the effects of the t(1;11) translocation. RNAseq and pathway analysis of the mutant mouse predicts multiple Der1-induced alterations converging upon synapse function and plasticity. Synaptosome proteomics confirmed that the Der1 mutation impacts synapse composition, and electrophysiology found reduced AMPA:NMDA ratio in hippocampal neurons, indicating changed excitatory signalling. Moreover, hippocampal parvalbumin-positive interneuron density is increased, suggesting that the Der1 mutation affects inhibitory control of neuronal circuits. These phenotypes predict that neurotransmission is impacted at many levels by DISC1 disruption in human t(1;11) translocation carriers. Notably, genes implicated in schizophrenia, depression and bipolar disorder by large-scale genetic studies are enriched among the Der1-dysregulated genes, just as we previously observed for the t(1;11) translocation carrier-derived neurons. Furthermore, RNAseq analysis predicts that the Der1 mutation primarily targets a subset of cell types, pyramidal neurons and interneurons, previously shown to be vulnerable to the effects of common schizophrenia-associated genetic variants. In conclusion, DISC1 disruption by the t(1;11) translocation may contribute to the psychiatric disorders of translocation carriers through commonly affected pathways and processes in neurotransmission.


Asunto(s)
Proteínas del Tejido Nervioso , Esquizofrenia , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Parvalbúminas/metabolismo , Esquizofrenia/genética
3.
J Physiol ; 596(14): 2747-2771, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30008190

RESUMEN

Disrupted in schizophrenia 1 (DISC1) is an important hub protein, forming multimeric complexes by self-association and interacting with a large number of synaptic and cytoskeletal molecules. The synaptic location of DISC1 in the adult brain suggests a role in synaptic plasticity, and indeed, a number of studies have discovered synaptic plasticity impairments in a variety of different DISC1 mutants. This review explores the possibility that DISC1 is an important molecule for organizing proteins involved in synaptic plasticity and examines why mutations in DISC1 impair plasticity. It concentrates on DISC1's role in interacting with synaptic proteins, controlling dendritic structure and cellular trafficking of mRNA, synaptic vesicles and mitochondria. N-terminal directed mutations appear to impair synaptic plasticity through interactions with phosphodiesterase 4B (PDE4B) and hence protein kinase A (PKA)/GluA1 and PKA/cAMP response element-binding protein (CREB) signalling pathways, and affect spine structure through interactions with kalirin 7 (Kal-7) and Rac1. C-terminal directed mutations also impair plasticity possibly through altered interactions with lissencephaly protein 1 (LIS1) and nuclear distribution protein nudE-like 1 (NDEL1), thereby affecting developmental processes such as dendritic structure and spine maturation. Many of the same molecules involved in DISC1's cytoskeletal interactions are also involved in intracellular trafficking, raising the possibility that impairments in intracellular trafficking affect cytoskeletal development and vice versa. While the multiplicity of DISC1 protein interactions makes it difficult to pinpoint a single causal signalling pathway, we suggest that the immediate-term effects of N-terminal influences on GluA1, Rac1 and CREB, coupled with the developmental effects of C-terminal influences on trafficking and the cytoskeleton make up the two main branches of DISC1's effect on synaptic plasticity and dendritic spine stability.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Enfermedades del Sistema Nervioso/fisiopatología , Plasticidad Neuronal , Sinapsis/fisiología , Humanos , Enfermedades del Sistema Nervioso/metabolismo , Transducción de Señal
4.
Biol Psychiatry ; 81(3): 179-192, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27587266

RESUMEN

BACKGROUND: Dysregulation of Ras-extracellular signal-related kinase (ERK) signaling gives rise to RASopathies, a class of neurodevelopmental syndromes associated with intellectual disability. Recently, much attention has been directed at models bearing mild forms of RASopathies whose behavioral impairments can be attenuated by inhibiting the Ras-ERK cascade in the adult. Little is known about the brain mechanisms in severe forms of these disorders. METHODS: We performed an extensive characterization of a new brain-specific model of severe forms of RASopathies, the KRAS12V mutant mouse. RESULTS: The KRAS12V mutation results in a severe form of intellectual disability, which parallels mental deficits found in patients bearing mutations in this gene. KRAS12V mice show a severe impairment of both short- and long-term memory in a number of behavioral tasks. At the cellular level, an upregulation of ERK signaling during early phases of postnatal development, but not in the adult state, results in a selective enhancement of synaptogenesis in gamma-aminobutyric acidergic interneurons. The enhancement of ERK activity in interneurons at this critical postnatal time leads to a permanent increase in the inhibitory tone throughout the brain, manifesting in reduced synaptic transmission and long-term plasticity in the hippocampus. In the adult, the behavioral and electrophysiological phenotypes in KRAS12V mice can be temporarily reverted by inhibiting gamma-aminobutyric acid signaling but not by a Ras-ERK blockade. Importantly, the synaptogenesis phenotype can be rescued by a treatment at the developmental stage with Ras-ERK inhibitors. CONCLUSIONS: These data demonstrate a novel mechanism underlying inhibitory synaptogenesis and provide new insights in understanding mental dysfunctions associated to RASopathies.


Asunto(s)
Encéfalo/fisiología , Neuronas GABAérgicas/fisiología , Discapacidad Intelectual/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Sinapsis/fisiología , Animales , Ansiedad/metabolismo , Ansiedad/fisiopatología , Conducta Animal/fisiología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiología , Potenciales Postsinápticos Inhibidores , Potenciación a Largo Plazo , Trastornos de la Memoria/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptores de GABA/metabolismo , Conducta Social , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
5.
Science ; 349(6246): 424-7, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26206934

RESUMEN

Development of the cerebral cortex is influenced by sensory experience during distinct phases of postnatal development known as critical periods. Disruption of experience during a critical period produces neurons that lack specificity for particular stimulus features, such as location in the somatosensory system. Synaptic plasticity is the agent by which sensory experience affects cortical development. Here, we describe, in mice, a developmental critical period that affects plasticity itself. Transient neonatal disruption of signaling via the C-terminal domain of "disrupted in schizophrenia 1" (DISC1)­a molecule implicated in psychiatric disorders­resulted in a lack of long-term potentiation (LTP) (persistent strengthening of synapses) and experience-dependent potentiation in adulthood. Long-term depression (LTD) (selective weakening of specific sets of synapses) and reversal of LTD were present, although impaired, in adolescence and absent in adulthood. These changes may form the basis for the cognitive deficits associated with mutations in DISC1 and the delayed onset of a range of psychiatric symptoms in late adolescence.


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Potenciación a Largo Plazo/genética , Trastornos Mentales/genética , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/genética , Edad de Inicio , Animales , Corteza Cerebral/fisiopatología , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/fisiopatología , Potenciación a Largo Plazo/efectos de los fármacos , Trastornos Mentales/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Plasticidad Neuronal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Tamoxifeno/farmacología
6.
Biol Psychiatry ; 77(2): 106-15, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24844602

RESUMEN

BACKGROUND: Bidirectional long-term plasticity at the corticostriatal synapse has been proposed as a central cellular mechanism governing dopamine-mediated behavioral adaptations in the basal ganglia system. Balanced activity of medium spiny neurons (MSNs) in the direct and the indirect pathways is essential for normal striatal function. This balance is disrupted in Parkinson's disease and in l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia (LID), a common motor complication of current pharmacotherapy of Parkinson's disease. METHODS: Electrophysiological recordings were performed in mouse cortico-striatal slice preparation. Synaptic plasticity, such as long-term potentiation (LTP) and depotentiation, was investigated. Specific pharmacological inhibitors or genetic manipulations were used to modulate the Ras-extracellular signal-regulated kinase (Ras-ERK) pathway, a signal transduction cascade implicated in behavioral plasticity, and synaptic activity in different subpopulations of striatal neurons was measured. RESULTS: We found that the Ras-ERK pathway, is not only essential for long-term potentiation induced with a high frequency stimulation protocol (HFS-LTP) in the dorsal striatum, but also for its reversal, synaptic depotentiation. Ablation of Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1), a neuronal activator of Ras proteins, causes a specific loss of HFS-LTP in the medium spiny neurons in the direct pathway without affecting LTP in the indirect pathway. Analysis of LTP in animals with unilateral 6-hydroxydopamine lesions (6-OHDA) rendered dyskinetic with chronic L-DOPA treatment reveals a complex, Ras-GRF1 and pathway-independent, apparently stochastic involvement of ERK. CONCLUSIONS: These data not only demonstrate a central role for Ras-ERK signaling in striatal LTP, depotentiation, and LTP restored after L-DOPA treatment but also disclose multifaceted synaptic adaptations occurring in response to dopaminergic denervation and pulsatile administration of L-DOPA.


Asunto(s)
Cuerpo Estriado/fisiopatología , Discinesia Inducida por Medicamentos/fisiopatología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Plasticidad Neuronal/fisiología , ras-GRF1/metabolismo , Animales , Antiparkinsonianos/toxicidad , Butadienos/farmacología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiopatología , Cuerpo Estriado/efectos de los fármacos , Dopamina/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Levodopa/toxicidad , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Nitrilos/farmacología , Oxidopamina , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/fisiopatología , Inhibidores de Proteínas Quinasas/farmacología , Técnicas de Cultivo de Tejidos , ras-GRF1/genética
7.
Front Cell Neurosci ; 7: 190, 2013 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-24198758

RESUMEN

Since the observation that nitric oxide (NO) can act as an intercellular messenger in the brain, the past 25 years have witnessed the steady accumulation of evidence that it acts pre-synaptically at both glutamatergic and GABAergic synapses to alter release-probability in synaptic plasticity. NO does so by acting on the synaptic machinery involved in transmitter release and, in a coordinated fashion, on vesicular recycling mechanisms. In this review, we examine the body of evidence for NO acting as a retrograde factor at synapses, and the evidence from in vivo and in vitro studies that specifically establish NOS1 (neuronal nitric oxide synthase) as the important isoform of NO synthase in this process. The NOS1 isoform is found at two very different locations and at two different spatial scales both in the cortex and hippocampus. On the one hand it is located diffusely in the cytoplasm of a small population of GABAergic neurons and on the other hand the alpha isoform is located discretely at the post-synaptic density (PSD) in spines of pyramidal cells. The present evidence is that the number of NOS1 molecules that exist at the PSD are so low that a spine can only give rise to modest concentrations of NO and therefore only exert a very local action. The NO receptor guanylate cyclase is located both pre- and post-synaptically and this suggests a role for NO in the coordination of local pre- and post-synaptic function during plasticity at individual synapses. Recent evidence shows that NOS1 is also located post-synaptic to GABAergic synapses and plays a pre-synaptic role in GABAergic plasticity as well as glutamatergic plasticity. Studies on the function of NO in plasticity at the cellular level are corroborated by evidence that NO is also involved in experience-dependent plasticity in the cerebral cortex.

8.
J Neurosci ; 32(43): 14994-9, 2012 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-23100421

RESUMEN

Nitric oxide synthase-1 (NOS1) is involved in several forms of plasticity including hippocampal-dependent learning and memory, experience-dependent plasticity in the barrel cortex, and long-term potentiation (LTP) in the hippocampus and neocortex. NOS1 also contributes to ischemic damage during stroke and has a stronger deleterious effect in males than females. We therefore investigated whether the role of NOS1 in plasticity might also be sex specific. We tested LTP in the layer IV-II/III pathway between barrel columns and experience-dependent plasticity in the barrel cortex of αNOS1 knock-out mice and their wild-type littermates. We found that LTP was absent in male αNOS1 knock-out mice but not in females and that the residual LTP in females was not NO dependent. We also found that experience-dependent potentiation due to single whisker experience was significantly reduced in male αNOS1 knockouts but was unaffected in females. The αNOS1 knockout had a small effect on the development of the barrels, which were reduced in size by 20% compared with wild types, but this effect was not sex specific. We therefore conclude that neocortical plasticity mechanisms differ between males and females at the synaptic level, either in their basic plasticity induction pathways or in their ability to compensate for loss of αNOS1.


Asunto(s)
Corteza Cerebral/fisiología , Potenciación a Largo Plazo/fisiología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Caracteres Sexuales , Animales , Biofisica , Corteza Cerebral/citología , Estimulación Eléctrica , Femenino , Técnicas In Vitro , Potenciación a Largo Plazo/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo I/deficiencia , Privación Sensorial/fisiología , Vibrisas/inervación
9.
J Neurosci ; 31(31): 11220-30, 2011 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-21813683

RESUMEN

Synaptic plasticity directs development of the nervous system and is thought to underlie memory storage in adult animals. A great deal of our current understanding of the role of AMPA receptors in synaptic plasticity comes from studies on developing cortex and cell cultures. In the present study, we instead focus on plasticity in mature neurons in the neocortex of adult animals. We find that the glutamate receptor 1 (GluR1) subunit of the AMPA receptor is involved in experience-dependent plasticity in adult cortex in vivo and that it acts in addition to neuronal nitric oxide synthase (αNOS1), an enzyme that produces the rapid synaptic signaling molecule nitric oxide (NO). Potentiation of the spared whisker response, following single whisker experience, is ∼33% less in GluR1-null mutants than in wild types. We found that the remaining plasticity depended on αNOS1. Potentiation was reduced by >42% in the single αNOS1-null mutants and completely abolished in GluR1/αNOS1 double-knock-out mice. However, potentiation in GluR1/NOS3 double knock-outs occurred at similar levels to that seen in GluR1 single knock-outs. Synaptic plasticity in the layer IV to II/III pathway in vitro mirrored the results in vivo, in that LTP was present in GluR1/NOS3 double-knock-out mice but not in the GluR1/αNOS1 animals. While basal levels of NO in cortical slices depended on both αNOS1 and NOS3, NMDA receptor-dependent NO release only depended on αNOS1 and not on NOS3. These findings demonstrate that αNOS1 acts in concert with GluR1 to produce experience-dependent plasticity in the neocortex.


Asunto(s)
Corteza Cerebral/citología , Potenciación a Largo Plazo/fisiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Receptores AMPA/metabolismo , Sinapsis/fisiología , Vibrisas/inervación , Análisis de Varianza , Animales , Bicuculina/análogos & derivados , Bicuculina/farmacología , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas del GABA/farmacología , Técnicas In Vitro , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/genética , Magnesio/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo I/deficiencia , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo III/deficiencia , Técnicas de Placa-Clamp , Receptores AMPA/deficiencia , Sinapsis/efectos de los fármacos , Sinapsis/genética , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética , Transmisión Sináptica/fisiología , Valina/análogos & derivados , Valina/farmacología
10.
J Comp Neurol ; 519(11): 2090-124, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21452214

RESUMEN

A minority of layer 2/3 (L2/3) pyramidal neurons exhibit spike-timing-dependent long-term potentiation (LTP) in normally reared adolescent mice. To determine whether particular subtypes of L2/3 neurons have a greater capacity for LTP than others, we correlated the morphological and electrophysiological properties of L2/3 neurons with their ability to undergo LTP by using a spike-timing-dependent protocol applied via layer 4 inputs from the neighboring barrel column. No correlation was found between the incidence of LTP and the cell's electrophysiological properties, nor with their laminar or columnar location. However, in cortex of normal, undeprived mice, neurons that exhibited LTP had dendrites that extended farther horizontally than those that showed no plasticity, and this horizontal spread was due to off-axis apical dendrites. From a sample of reconstructed neurons, two-thirds of neurons' dendritic arborizations reached into at least one adjacent barrel column. We also tested whether this relationship persisted following a short period of whisker deprivation. The probability of inducing LTP increased from 33% in cortex of undeprived mice to 53% following 7 days of whisker deprivation, and the incidence of LTD with the same protocol decreased from 49% to 9%. In deprived cortex, neurons exhibiting LTP did not extend any farther horizontally than those that showed no plasticity. Whisker deprivation did not affect horizontal spread of dendrites nor dendritic structure in general but did produced an increase in spine density, both on basal and on apical dendrites, suggesting a possible substrate for the increased levels of LTP observed in deprived cortex.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/fisiología , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Células Piramidales/ultraestructura , Potenciales de Acción/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Ratones , Ratones Endogámicos C57BL , Red Nerviosa/anatomía & histología , Red Nerviosa/fisiología , Privación Sensorial/fisiología , Vibrisas/inervación
11.
J Neurosci ; 30(4): 1441-51, 2010 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-20107071

RESUMEN

At many central synapses, the presynaptic bouton and postsynaptic density are structurally correlated. However, it is unknown whether this correlation extends to the functional properties of the synapses. To investigate this, we made recordings from synaptically coupled pairs of pyramidal neurons in rat visual cortex. The mean peak amplitude of EPSPs recorded from pairs of L2/3 neurons ranged between 40 microV and 2.9 mV. EPSP rise times were consistent with the majority of the synapses being located on basal dendrites; this was confirmed by full anatomical reconstructions of a subset of connected pairs. Over a third of the connections could be described using a quantal model that assumed simple binomial statistics. Release probability (P(r)) and quantal size (Q), as measured at the somatic recording site, showed considerable heterogeneity between connections. However, across the population of connections, values of P(r) and Q for individual connections were positively correlated with one another. This correlation also held for inputs to layer 5 pyramidal neurons from both layer 2/3 and neighboring layer 5 pyramidal neurons, suggesting that during development of cortical connections presynaptic and postsynaptic strengths are dependently scaled. For 2/3 to 2/3 connections, mean EPSP amplitude was correlated with both Q and P(r) values but uncorrelated with N, the number of functional release sites mediating the connection. The efficacy of a cortical connection is thus set by coordinated presynaptic and postsynaptic strength.


Asunto(s)
Neocórtex/fisiología , Vías Nerviosas/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Corteza Visual/fisiología , Animales , Dendritas/fisiología , Dendritas/ultraestructura , Electrofisiología/métodos , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Neocórtex/citología , Vías Nerviosas/citología , Plasticidad Neuronal/fisiología , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Células Piramidales/citología , Ratas , Ratas Sprague-Dawley , Sinapsis/ultraestructura , Membranas Sinápticas/fisiología , Membranas Sinápticas/ultraestructura , Vesículas Sinápticas/fisiología , Vesículas Sinápticas/ultraestructura , Corteza Visual/citología
12.
J Neurosci ; 28(52): 14031-41, 2008 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-19109486

RESUMEN

Neocortical long-term potentiation (LTP) consists of both presynaptic and postsynaptic components that rely on nitric oxide (NO) and the GluR1 subunit of the AMPA receptor, respectively. In this study, we found that hippocampal LTP, induced by theta-burst stimulation in mature (>8-week-old) GluR1 knock-out mice was almost entirely NO dependent and involved both the alpha splice variant of NO synthase-1 and the NO synthase-3 isoforms of NO synthase. Theta-burst induced LTP was also partly NO-dependent in wild-type mice and made up approximately 50% of the potentiation 2 h after tetanus. Theta-burst stimulation reliably produced postsynaptic spikes, including a high probability of complex spikes. Inhibition of postsynaptic somatic spikes with intracellular QX314 or local TTX application prevented LTP in the GluR1 knock-out mice and also blocked the NO component of LTP in wild types. We conclude that theta-burst stimulation is particularly well suited to producing the postsynaptic somatic spikes required for NO-dependent LTP.


Asunto(s)
Hipocampo/citología , Potenciación a Largo Plazo/fisiología , Neuronas/fisiología , Óxido Nítrico/metabolismo , Receptores AMPA/deficiencia , Potenciales Sinápticos/fisiología , 2-Amino-5-fosfonovalerato/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Análisis de Varianza , Anestésicos Locales/farmacología , Animales , Biofisica , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Técnicas In Vitro , Lidocaína/análogos & derivados , Lidocaína/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa de Tipo I/deficiencia , Óxido Nítrico Sintasa de Tipo III/deficiencia , Nitroarginina/farmacología , Potenciales Sinápticos/efectos de los fármacos , Potenciales Sinápticos/genética , Tetrodotoxina/farmacología
13.
Neuron ; 60(5): 861-74, 2008 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-19081380

RESUMEN

Calcium/calmodulin kinase II (CaMKII) is required for LTP and experience-dependent potentiation in the barrel cortex. Here, we find that whisker deprivation increases LTP in the layer IV to II/III pathway and that PKA antagonists block the additional LTP. No LTP was seen in undeprived CaMKII-T286A mice, but whisker deprivation again unmasked PKA-sensitive LTP. Infusion of a PKA agonist potentiated EPSPs in deprived wild-types and deprived CaMKII-T286A point mutants but not in undeprived animals of either genotype. The PKA-dependent potentiation mechanism was not present in GluR1 knockouts. Infusion of a PKA antagonist caused depression of EPSPs in undeprived but not deprived cortex. LTD was occluded by whisker deprivation and blocked by PKA manipulation, but not blocked by cannabinoid antagonists. NMDA receptor currents were unaffected by sensory deprivation. These results suggest that sensory deprivation causes synaptic depression by reversing a PKA-dependent process that may act via GluR1.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Privación Sensorial/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Análisis de Varianza , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Cannabinoides/metabolismo , Corteza Cerebral/citología , Estimulación Eléctrica/métodos , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Plasticidad Neuronal/genética , Neuronas/efectos de los fármacos , Piperidinas/farmacología , Mutación Puntual/genética , Inhibidores de Proteínas Quinasas/farmacología , Pirazoles/farmacología , Receptores AMPA/deficiencia , Vibrisas/inervación
14.
Nat Neurosci ; 11(10): 1140-2, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18776896

RESUMEN

Several synaptic depression mechanisms have been described for the hippocampus, cerebellum and neocortex in vitro, but little is known about which, if any, are engaged during experience-dependent depression (EDD). We found that EDD in the mouse barrel cortex depends on the AMPA subunit GluR1 in layers II/III and IV, but not in layer V, and that long-term depression is also GluR1 dependent in the IV-II/III, but not II/III-V, pathway.


Asunto(s)
Depresión Sináptica a Largo Plazo/fisiología , Receptores AMPA/fisiología , Corteza Somatosensorial/anatomía & histología , Corteza Somatosensorial/fisiología , Transmisión Sináptica/fisiología , Análisis de Varianza , Animales , Depresión Sináptica a Largo Plazo/genética , Ratones , Ratones Noqueados , Receptores AMPA/deficiencia , Privación Sensorial/fisiología , Transmisión Sináptica/genética , Vibrisas/inervación
15.
J Neurophysiol ; 97(4): 2965-75, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17267749

RESUMEN

Paired neuronal activity is known to induce changes in synaptic strength that result in the synapse in question having different properties to unmodified synapses. Here we show that in layer 2/3 excitatory connections in young adult rat cortex paired activity acts to normalize the strength and quantal parameters of connections. Paired action potential firing produces long-term potentiation in only a third of connections, whereas a third remain with their amplitude unchanged and a third exhibit long-term depression. Furthermore, the direction of plasticity can be predicted by the initial strength of the connection: weak connections potentiate and strong connections depress. A quantal analysis reveals that changes in synaptic efficacy were predominantly presynaptic in locus and that the key determinant of the direction and magnitude of synaptic modification was the initial release probability (P(r)) of the synapse, which correlated inversely with change in P(r) after pairing. Furthermore, distal synapses also exhibited larger potentiations including postsynaptic increases in efficacy, whereas more proximal inputs did not. This may represent a means by which distal synapses preferentially increase their efficacy to achieve equal weighting at the soma. Paired activity thus acts to normalize synaptic strength, by both pre- and postsynaptic mechanisms.


Asunto(s)
Neocórtex/fisiología , Receptores Presinapticos/fisiología , Sinapsis/fisiología , Animales , Estimulación Eléctrica , Electrofisiología , Potenciales Postsinápticos Excitadores/fisiología , Técnicas In Vitro , Potenciación a Largo Plazo/fisiología , Neocórtex/citología , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Ratas , Ratas Sprague-Dawley
16.
J Neurosci ; 26(28): 7395-404, 2006 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-16837587

RESUMEN

In this study, we investigated the mechanisms underlying synaptic plasticity at the layer IV to II/III pathway in barrel cortex of mice aged 6-13 weeks. This pathway is one of the likely candidates for expression of experience-dependent plasticity in the barrel cortex and may serve as a model for other IV to II/III synapses in the neocortex. We found that postsynaptic autocamtide-2-inhibitory peptide is sufficient to block long-term potentiation (LTP) (IC50 of 500 nm), implicating postsynaptic calcium/calmodulin-dependent kinase II in LTP induction. AMPA receptor subunit 1 (GluR1) knock-out mice also showed LTP in this pathway, but potentiation was predominantly presynaptic in origin as determined by paired-pulse analysis, coefficient of variation analysis, and quantal analysis, whereas wild types showed a mixed presynaptic and postsynaptic locus. Quantal analysis at this synapse was validated by measuring uniquantal events in the presence of strontium. The predominantly presynaptic LTP in the GluR1 knock-outs was blocked by postsynaptic antagonism of nitric oxide synthase (NOS), either with intracellular N-omega-nitro-L-arginine methyl ester or N-nitro-L-arginine, providing the first evidence for a retrograde transmitter role for NO at this synapse. Antagonism of NOS in wild types significantly reduced but did not eliminate LTP (group average reduction of 50%). The residual LTP formed a variable proportion of the total LTP in each cell and was found to be postsynaptic in origin. We found no evidence for silent synapses in this pathway at this age. Finally, application of NO via a donor induced potentiation in layer II/III cells and caused an increase in frequency but not amplitude of miniature EPSPs, again implicating NO in presynaptic plasticity.


Asunto(s)
Potenciación a Largo Plazo , Neocórtex/fisiología , Óxido Nítrico/fisiología , Receptores AMPA/fisiología , Sinapsis/fisiología , Potenciales de Acción , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/fisiología , Potenciales Postsinápticos Excitadores , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Nitroarginina/farmacología , Técnicas de Placa-Clamp , Receptores AMPA/genética , Receptores de N-Metil-D-Aspartato/fisiología , Transmisión Sináptica
17.
J Neurosci ; 26(23): 6337-45, 2006 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-16763042

RESUMEN

Bursts of synaptic transmission are known to induce transient depletion of Ca2+ within the synaptic cleft. Although Ca2+ depletion has been shown to lower presynaptic release probability, effects on the postsynaptic cell have not been reported. In this study, we show that physiologically relevant reductions in extracellular Ca2+ lead to a decrease in synaptic strength between synaptically coupled layer 2/3 cortical pyramidal neurons. Using quantal analysis and mEPSP analysis, we demonstrate that a lowered extracellular Ca2+ produces a reduction in the postsynaptic quantal size in addition to its known effect on release probability. An elevated Mg2+ level can prevent this reduction in postsynaptic efficacy at subphysiological Ca2+ levels. We show that the calcium-dependent effect on postsynaptic quantal size is mediated by group 1 metabotropic glutamate receptors, acting via CaMKII (Ca2+/calmodulin-dependent protein kinase II) and PKC. Therefore, physiologically relevant changes in extracellular Ca2+ can regulate information transfer at cortical synapses via both presynaptic and postsynaptic mechanisms.


Asunto(s)
Calcio/fisiología , Espacio Extracelular/metabolismo , Receptores de Glutamato Metabotrópico/fisiología , Sinapsis/fisiología , Animales , Calcio/metabolismo , Potenciales Postsinápticos Excitadores , Magnesio/metabolismo , Concentración Osmolar , Ratas , Ratas Sprague-Dawley
18.
J Neurosci ; 26(17): 4509-18, 2006 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-16641230

RESUMEN

Neuroprotection can be induced by low doses of NMDA, which activate both synaptic and extrasynaptic NMDA receptors. This is in apparent contradiction with our recent findings that extrasynaptic NMDA receptor signaling exerts a dominant inhibitory effect on prosurvival signaling from synaptic NMDA receptors. Here we report that exposure to low preconditioning doses of NMDA results in preferential activation of synaptic NMDA receptors because of a dramatic increase in action potential firing. Both acute and long-lasting phases of neuroprotection in the face of apoptotic or excitotoxic insults are dependent on this firing enhancement. Key mediators of synaptic NMDA receptor-dependent neuroprotection, phosphatidylinositol 3 kinase-Akt (PI3 kinase-Akt) signaling to Forkhead box subgroup O (FOXO) export and glycogen synthase kinase 3beta (GSK3beta) inhibition and cAMP response element-binding protein-dependent (CREB-dependent) activation of brain-derived neurotrophic factor (BDNF), can be induced only by low doses of NMDA via this action potential-dependent route. In contrast, NMDA doses on the other side of the toxicity threshold do not favor synaptic NMDA receptor activation because they strongly suppress firing rates below baseline. The classic bell-shaped curve depicting neuronal fate in response to NMDA dose can be viewed as the net effect of two antagonizing (synaptic vs extrasynaptic) curves: via increased firing the synaptic signaling dominates at low doses, whereas firing becomes suppressed and extrasynaptic signaling dominates as the toxicity threshold is crossed.


Asunto(s)
Potenciales de Acción/fisiología , Hipocampo/fisiología , N-Metilaspartato/administración & dosificación , Neuronas/fisiología , Fármacos Neuroprotectores/administración & dosificación , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Hipocampo/efectos de los fármacos , Hipocampo/embriología , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos
19.
J Neurosci ; 25(17): 4279-87, 2005 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-15858054

RESUMEN

The mechanism by which physiological synaptic NMDA receptor activity promotes neuronal survival is not well understood. Here, we show that that an episode of synaptic activity can promote neuroprotection for a long time after that activity has ceased. This long-lasting or "late phase" of neuroprotection is dependent on nuclear calcium signaling and cAMP response element (CRE)-mediated gene expression. In contrast, neuroprotection evoked acutely by ongoing synaptic activity relies solely on the activation of the phosphatidylinositol 3-kinase/Akt pathway. This "acute phase" does not require nuclear calcium signaling and is independent of activation of the CRE-binding protein (CREB) family of transcription factors. Thus, activity-dependent neuroprotection comprises two mechanistically distinct phases that differ in their spatial requirements for calcium and in their reliance on the CREB family.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Núcleo Celular/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Neuronas/citología , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Bicuculina/farmacología , Western Blotting/métodos , Señalización del Calcio/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Ceramidas/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Maleato de Dizocilpina/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Agonistas del GABA , Antagonistas del GABA/farmacología , Expresión Génica/efectos de los fármacos , Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/biosíntesis , Hipocampo , Técnicas In Vitro , Muscimol/farmacología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Fármacos Neuroprotectores/farmacología , Proteína Oncogénica v-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología , Factores de Tiempo , Transfección/métodos , Tretinoina/farmacología
20.
J Neurosci ; 23(11): 4428-36, 2003 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-12805283

RESUMEN

Experience-dependent plasticity can be induced in the barrel cortex by removing all but one whisker, leading to potentiation of the neuronal response to the spared whisker. To determine whether this form of potentiation depends on synaptic plasticity, we studied long-term potentiation (LTP) and sensory-evoked potentials in the barrel cortex of alpha-calcium/calmodulin-dependent protein kinase II (alphaCaMKII)T286A mutant mice. We studied three different forms of LTP induction: theta-burst stimulation, spike pairing, and postsynaptic depolarization paired with low-frequency presynaptic stimulation. None of these protocols produced LTP in alphaCaMKIIT286A mutant mice, although all three were successful in wild-type mice. To study synaptic plasticity in vivo, we measured sensory-evoked potentials in the barrel cortex and found that single-whisker experience selectively potentiated synaptic responses evoked by sensory stimulation of the spared whisker in wild types but not in alphaCaMKIIT286A mice. These results demonstrate that alphaCaMKII autophosphorylation is required for synaptic plasticity in the neocortex, whether induced by a variety of LTP induction paradigms or by manipulation of sensory experience, thereby strengthening the case that the two forms of plasticity are related.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Potenciación a Largo Plazo/fisiología , Neocórtex/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Estimulación Eléctrica/métodos , Potenciales Evocados/fisiología , Femenino , Técnicas In Vitro , Masculino , Ratones , Ratones Mutantes , Mutación , Neocórtex/enzimología , Técnicas de Placa-Clamp , Fosforilación , Estimulación Física , Privación Sensorial/fisiología , Corteza Somatosensorial/enzimología , Corteza Somatosensorial/fisiología , Ritmo Teta , Vibrisas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...