Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Biosci (Elite Ed) ; 4(7): 2402-9, 2012 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-22652647

RESUMEN

Several chronic lung diseases have been linked to cigarette smoking (Chronic Obstructive Pulmonary Disease (COPD), and cancer are associated with increased tobacco use). We recently described a collagen fragment, proline-glycine-proline (PGP), chemotactic for neutrophils, that appears to play a role in COPD, cystic fibrosis, and bronchiolitis obliterans syndrome. PGP can exist in either its native or acetylated form (NAcPGP), although the mechanism of N-terminal-acetylation remains unknown. This work investigates the possibility that cigarette smoke (CS) and its components acetylate PGP, describing a possible mechanism for some of the chronic inflammation seen in tobacco-associated disease. CSE and CSC (3.56 and 12.38 ng/ml NAcPGP respectively, p less than 0.01) and its components (acrolein, acetaldehyde, and methyl glyoxal) acetylated PGP (0.51, 1.03, and 0.23 ng/ml NAcPGP, p less than 0.01). Both N-acetyl-cysteine and carbocysteine (scavengers of reactive aldehydes) blocked chemical acetylation of PGP by CS (100 percent and 97 percent inhibition, respectively, p less than 0.01). NAcPGP is more chemoattractive to neutrophils, and less susceptible to degradation by Leukotriene-A4-Hydrolase (detected in the lung). These experiments propose a mechanism for the increased neutrophil recruitment seen in smoking-associated lung diseases.


Asunto(s)
Quimiotaxis de Leucocito , Nicotiana , Oligopéptidos/metabolismo , Prolina/análogos & derivados , Humo , Acetilación , Acetilcisteína/farmacología , Carbocisteína/farmacología , Humanos , Neutrófilos/citología , Prolina/metabolismo
2.
Front Biosci (Elite Ed) ; 4(5): 1864-70, 2012 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-22202003

RESUMEN

Perhaps behind only the understanding of the genetic code in importance is the comprehension of protein sequence and structure in its effect on modern scientific investigation. How proteins are structured and interact dictates a considerable amount of the body's processes in maintaining homeostasis. Unfortunately, in diseases of autoimmunity, these processes are directed against the body itself and most of the current clinical responses are severely lacking. This review addresses current therapeutics involved in the treatment of various autoimmune diseases and details potential future therapeutics designed with a more targeted approach. Detailed in this manuscript is the concept of utilizing peptides possessing an inverse hydropathy to the immunogenic region of proteins to generate anti-idiotypic (anti-Id) and anti-clonotypic T cell receptor (TCR) antibodies (Abs). Theoretically, the anti-Id Abs cross react with Id Abs and negate the powerful machinery of the adaptive immune response with little to no side effects. A series of studies by a number of groups have shown this to be an exciting and intriguing concept that will likely play a role in the future treatment of autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes/terapia , Enfermedades Autoinmunes/inmunología , Autoinmunidad , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA