Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 5042, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29568056

RESUMEN

Animals in urban habitats face many novel selection pressures such as increased human population densities and human disturbance. This is predicted to favour bolder and more aggressive individuals together with greater flexibility in behaviour. Previous work has focussed primarily on studying these traits in captive birds and has shown increased aggression and reduced consistency between traits (behavioural syndromes) in birds from urban populations. However, personality (consistency within a behavioural trait) has not been well studied in the wild. Here we tested whether urban free-living male great tits show greater territorial aggression than rural counterparts. We also tested predictions that both behavioural syndromes and personality would show lower consistency in urban populations. We found that urban populations were more aggressive than rural populations and urban birds appeared to show lower levels of individual behavioural repeatability (personality) as predicted. However, we found no effect of urbanisation on behavioural syndromes (correlations between multiple behavioural traits). Our results indicate that urban environments may favour individuals which exhibit increased territorial aggression and greater within-trait flexibility which may be essential to success in holding urban territories. Determining how urban environments impact key fitness traits will be important in predicting how animals cope with ongoing urbanisation.


Asunto(s)
Agresión/fisiología , Conducta Animal/fisiología , Passeriformes/fisiología , Animales , Humanos , Densidad de Población , Población Rural , Urbanización
3.
J Exp Biol ; 220(Pt 6): 1065-1071, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28096429

RESUMEN

Animals that use vocal signals to communicate often compensate for interference and masking from background noise by raising the amplitude of their vocalisations. This response has been termed the Lombard effect. However, despite more than a century of research, little is known how quickly animals can adjust the amplitude of their vocalisations after the onset of noise. The ability to respond quickly to increases in noise levels would allow animals to avoid signal masking and ensure their calls continue to be heard, even if they are interrupted by sudden bursts of high-amplitude noise. We tested how quickly singing male canaries (Serinus canaria) exhibit the Lombard effect by exposing them to short playbacks of white noise and measuring the speed of their responses. We show that canaries exhibit the Lombard effect in as little as 300 ms after the onset of noise and are also able to increase the amplitude of their songs mid-song and mid-phrase without pausing. Our results demonstrate high vocal plasticity in this species and suggest that birds are able to adjust the amplitude of their vocalisations very rapidly to ensure they can still be heard even during sudden changes in background noise levels.


Asunto(s)
Canarios/fisiología , Vocalización Animal , Animales , Femenino , Audición , Masculino , Ruido , Sonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...