Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 30(12): 1936-1946, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37903907

RESUMEN

α5 subunit-containing γ-aminobutyric acid type A (GABAA) receptors represent a promising drug target for neurological and neuropsychiatric disorders. Altered expression and function contributes to neurodevelopmental disorders such as Dup15q and Angelman syndromes, developmental epilepsy and autism. Effective drug action without side effects is dependent on both α5-subtype selectivity and the strength of the positive or negative allosteric modulation (PAM or NAM). Here we solve structures of drugs bound to the α5 subunit. These define the molecular basis of binding and α5 selectivity of the ß-carboline, methyl 6,7-dimethoxy-4-ethyl-ß-carboline-3-carboxylate (DMCM), type II benzodiazepine NAMs, and a series of isoxazole NAMs and PAMs. For the isoxazole series, each molecule appears as an 'upper' and 'lower' moiety in the pocket. Structural data and radioligand binding data reveal a positional displacement of the upper moiety containing the isoxazole between the NAMs and PAMs. Using a hybrid molecule we directly measure the functional contribution of the upper moiety to NAM versus PAM activity. Overall, these structures provide a framework by which to understand distinct modulator binding modes and their basis of α5-subtype selectivity, appreciate structure-activity relationships, and empower future structure-based drug design campaigns.


Asunto(s)
Receptores de GABA-A , Ácido gamma-Aminobutírico , Receptores de GABA-A/metabolismo , Isoxazoles/farmacología
2.
Nucleic Acids Res ; 51(21): 11732-11747, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37870477

RESUMEN

The classical Non-Homologous End Joining (c-NHEJ) pathway is the predominant process in mammals for repairing endogenous, accidental or programmed DNA Double-Strand Breaks. c-NHEJ is regulated by several accessory factors, post-translational modifications, endogenous chemical agents and metabolites. The metabolite inositol-hexaphosphate (IP6) stimulates c-NHEJ by interacting with the Ku70-Ku80 heterodimer (Ku). We report cryo-EM structures of apo- and DNA-bound Ku in complex with IP6, at 3.5 Å and 2.74 Å resolutions respectively, and an X-ray crystallography structure of a Ku in complex with DNA and IP6 at 3.7 Å. The Ku-IP6 interaction is mediated predominantly via salt bridges at the interface of the Ku70 and Ku80 subunits. This interaction is distant from the DNA, DNA-PKcs, APLF and PAXX binding sites and in close proximity to XLF binding site. Biophysical experiments show that IP6 binding increases the thermal stability of Ku by 2°C in a DNA-dependent manner, stabilizes Ku on DNA and enhances XLF affinity for Ku. In cells, selected mutagenesis of the IP6 binding pocket reduces both Ku accrual at damaged sites and XLF enrolment in the NHEJ complex, which translate into a lower end-joining efficiency. Thus, this study defines the molecular bases of the IP6 metabolite stimulatory effect on the c-NHEJ repair activity.


Asunto(s)
Proteínas de Unión al ADN , Ácido Fítico , Animales , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Proteínas de Unión al ADN/genética , Autoantígeno Ku/metabolismo , Mamíferos/genética , Humanos
3.
Structure ; 31(8): 895-902.e3, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37311458

RESUMEN

The ability of humans to maintain the integrity of the genome is imperative for cellular survival. DNA double-strand breaks (DSBs) are considered the most critical type of DNA lesion, which can ultimately lead to diseases including cancer. Non-homologous end joining (NHEJ) is one of two core mechanisms utilized to repair DSBs. DNA-PK is a key component in this process and has recently been shown to form alternate long-range synaptic dimers. This has led to the proposal that these complexes can be formed before transitioning to a short-range synaptic complex. Here we present cryo-EM data representing an NHEJ supercomplex consisting of a trimer of DNA-PK in complex with XLF, XRCC4, and DNA Ligase IV. This trimer represents a complex of both long-range synaptic dimers. We discuss the potential role of the trimeric structure, and possible higher order oligomers, as structural intermediates in the NHEJ mechanism, or as functional DNA repair centers.


Asunto(s)
Enzimas Reparadoras del ADN , Reparación del ADN , Humanos , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Microscopía por Crioelectrón , Reparación del ADN por Unión de Extremidades , ADN Ligasa (ATP) , Proteína Quinasa Activada por ADN/metabolismo , ADN/genética
4.
Sci Adv ; 9(22): eadg2834, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37256950

RESUMEN

Nonhomologous end joining is a critical mechanism that repairs DNA double-strand breaks in human cells. In this work, we address the structural and functional role of the accessory protein PAXX [paralog of x-ray repair cross-complementing protein 4 (XRCC4) and XRCC4-like factor (XLF)] in this mechanism. Here, we report high-resolution cryo-electron microscopy (cryo-EM) and x-ray crystallography structures of the PAXX C-terminal Ku-binding motif bound to Ku70/80 and cryo-EM structures of PAXX bound to two alternate DNA-dependent protein kinase (DNA-PK) end-bridging dimers, mediated by either Ku80 or XLF. We identify residues critical for the Ku70/PAXX interaction in vitro and in cells. We demonstrate that PAXX and XLF can bind simultaneously to the Ku heterodimer and act as structural bridges in alternate forms of DNA-PK dimers. Last, we show that engagement of both proteins provides a complementary advantage for DNA end synapsis and end joining in cells.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Enzimas Reparadoras del ADN , Humanos , Microscopía por Crioelectrón , ADN , Enzimas Reparadoras del ADN/genética
5.
Mol Cell ; 83(5): 698-714.e4, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36724784

RESUMEN

Non-homologous end joining is the major double-strand break repair (DSBR) pathway in mammals. DNA-PK is the hub and organizer of multiple steps in non-homologous end joining (NHEJ). Recent high-resolution structures show how two distinct NHEJ complexes "synapse" two DNA ends. One complex includes a DNA-PK dimer mediated by XLF, whereas a distinct DNA-PK dimer forms via a domain-swap mechanism where the C terminus of Ku80 from one DNA-PK protomer interacts with another DNA-PK protomer in trans. Remarkably, the distance between the two synapsed DNA ends in both dimers is the same (∼115 Å), which matches the distance observed in the initial description of an NHEJ long-range synaptic complex. Here, a mutational strategy is used to demonstrate distinct cellular function(s) of the two dimers: one promoting fill-in end processing, while the other promotes DNA end resection. Thus, the specific DNA-PK dimer formed (which may be impacted by DNA end structure) dictates the mechanism by which ends will be made ligatable.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN , Animales , Proteínas de Unión al ADN/genética , Subunidades de Proteína/metabolismo , Reparación del ADN por Unión de Extremidades , Reparación del ADN , ADN/genética , Proteína Quinasa Activada por ADN/genética , Autoantígeno Ku/genética , Mamíferos/metabolismo
6.
EMBO J ; 42(2): e112574, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36504162

RESUMEN

Biogenesis of the essential precursor of the bacterial cell envelope, glucosamine-6-phosphate (GlcN6P), is controlled by intricate post-transcriptional networks mediated by GlmZ, a small regulatory RNA (sRNA). GlmZ stimulates translation of the mRNA encoding GlcN6P synthtase in Escherichia coli, but when bound by RapZ protein, the sRNA becomes inactivated through cleavage by the endoribonuclease RNase E. Here, we report the cryoEM structure of the RapZ:GlmZ complex, revealing a complementary match of the RapZ tetrameric quaternary structure to structural repeats in the sRNA. The nucleic acid is contacted by RapZ mostly through a highly conserved domain that shares an evolutionary relationship with phosphofructokinase and suggests links between metabolism and riboregulation. We also present the structure of a precleavage intermediate formed between the binary RapZ:GlmZ complex and RNase E that reveals how GlmZ is presented and recognised by the enzyme. The structures provide a framework for understanding how other encounter complexes might guide recognition and action of endoribonucleases on target transcripts, and how structured substrates in polycistronic precursors may be recognised for processing by RNase E.


Asunto(s)
Proteínas de Escherichia coli , ARN Pequeño no Traducido , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Ribonucleoproteínas/genética , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/genética
7.
Res Sq ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38168382

RESUMEN

It has been known for decades that the DNA-dependent protein kinase (DNA-PK) is only an active serine/threonine protein kinase when it is bound to a DNA double-stranded end; still, the molecular details of how this activation is achieved have remained elusive. The recent surge in structural information for DNA-PK complexes has provided valuable insights into the process of DNA end recognition by DNA-PK. A particularly intriguing feature of this kinase is a region of the protein that can transition from a seemingly structurally disordered state to a single alpha-helix that traverses down the DNA binding cradle. The DNA-PK bound DNA end of the DNA substrate engages with and appears to split around this helix which has been named the DNA End Blocking helix (DEB). Here a mutational approach is utilized to clarify the role of the DEB, and how DNA ends activate the enzyme. Our data suggest two distinct methods of kinase activation that is dependent on the DNA end chemistry. If the DNA end can split around the helix and stabilize the interaction between the DNA end and the DEB with a recently defined Helix-Hairpin-Helix (HHH) motif, the kinase forms an end-protection monomer that is active towards DNA-PK's many substrates. But if the DNA end cannot stably interact with the DEB [because of the DNA end structure, for instance hairpins, or because the DEB has been disrupted by mutation], the kinase is only partially activated, resulting in specific autophosphorylations of the DNA-PK monomer that allows nucleolytic end-processing. We posit that mutants that disrupt the capacity to stably generate the DEB/HHH DNA end-interaction are inefficient in generating the dimer complex that is requisite for NHEJ. In support of this idea, mutations that promote formation of this dimer partially rescue the severe cellular phenotypes associated with mutation of the DEB helix.

8.
Nat Commun ; 13(1): 5110, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042238

RESUMEN

Aedes aegypti has evolved to become an efficient vector for arboviruses but the mechanisms of host-pathogen tolerance are unknown. Immunoreceptor Toll and its ligand Spaetzle have undergone duplication which may allow neofunctionalization and adaptation. Here we present cryo-EM structures and biophysical characterisation of low affinity Toll5A complexes that display transient but specific interactions with Spaetzle1C, forming asymmetric complexes, with only one ligand clearly resolved. Loop structures of Spaetzle1C and Toll5A intercalate, temporarily bridging the receptor C-termini to promote signalling. By contrast unbound receptors form head-to-head homodimers that keep the juxtamembrane regions far apart in an inactive conformation. Interestingly the transcriptional signature of Spaetzle1C differs from other Spaetzle cytokines and controls genes involved in innate immunity, metabolism and tissue regeneration. Taken together our results explain how upregulation of Spaetzle1C in the midgut and Toll5A in the salivary gland shape the concomitant immune response.


Asunto(s)
Aedes , Arbovirus , Animales , Inmunidad Innata , Ligandos , Mosquitos Vectores/genética
9.
Nature ; 604(7904): 190-194, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35355020

RESUMEN

Type A γ-aminobutyric acid receptors (GABAARs) are pentameric ligand-gated chloride channels that mediate fast inhibitory signalling in neural circuits1,2 and can be modulated by essential medicines including general anaesthetics and benzodiazepines3. Human GABAAR subunits are encoded by 19 paralogous genes that can, in theory, give rise to 495,235 receptor types. However, the principles that govern the formation of pentamers, the permutational landscape of receptors that may emerge from a subunit set and the effect that this has on GABAergic signalling remain largely unknown. Here we use cryogenic electron microscopy to determine the structures of extrasynaptic GABAARs assembled from α4, ß3 and δ subunits, and their counterparts incorporating γ2 instead of δ subunits. In each case, we identified two receptor subtypes with distinct stoichiometries and arrangements, all four differing from those previously observed for synaptic, α1-containing receptors4-7. This, in turn, affects receptor responses to physiological and synthetic modulators by creating or eliminating ligand-binding sites at subunit interfaces. We provide structural and functional evidence that selected GABAAR arrangements can act as coincidence detectors, simultaneously responding to two neurotransmitters: GABA and histamine. Using assembly simulations and single-cell RNA sequencing data8,9, we calculated the upper bounds for receptor diversity in recombinant systems and in vivo. We propose that differential assembly is a pervasive mechanism for regulating the physiology and pharmacology of GABAARs.


Asunto(s)
Benzodiazepinas , Receptores de GABA-A , Transducción de Señal , Benzodiazepinas/farmacología , Sitios de Unión , Microscopía por Crioelectrón , Histamina/metabolismo , Humanos , Ligandos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , RNA-Seq , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Receptores de GABA-A/ultraestructura , Análisis de la Célula Individual , Ácido gamma-Aminobutírico/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(14): e2116708119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35357971

RESUMEN

Iron surface determinant B (IsdB) is a hemoglobin (Hb) receptor essential for hemic iron acquisition by Staphylococcus aureus. Heme transfer to IsdB is possible from oxidized Hb (metHb), but inefficient from Hb either bound to oxygen (oxyHb) or bound to carbon monoxide (HbCO), and encompasses a sequence of structural events that are currently poorly understood. By single-particle cryo-electron microscopy, we determined the structure of two IsdB:Hb complexes, representing key species along the heme extraction pathway. The IsdB:HbCO structure, at 2.9-Å resolution, provides a snapshot of the preextraction complex. In this early stage of IsdB:Hb interaction, the hemophore binds to the ß-subunits of the Hb tetramer, exploiting a folding-upon-binding mechanism that is likely triggered by a cis/trans isomerization of Pro173. Binding of IsdB to α-subunits occurs upon dissociation of the Hb tetramer into α/ß dimers. The structure of the IsdB:metHb complex reveals the final step of the extraction process, where heme transfer to IsdB is completed. The stability of the complex, both before and after heme transfer from Hb to IsdB, is influenced by isomerization of Pro173. These results greatly enhance current understanding of structural and dynamic aspects of the heme extraction mechanism by IsdB and provide insight into the interactions that stabilize the complex before the heme transfer event. This information will support future efforts to identify inhibitors of heme acquisition by S. aureus by interfering with IsdB:Hb complex formation.


Asunto(s)
Proteínas de Transporte de Catión , Hemo , Hemoglobinas , Proteínas de Transporte de Catión/química , Microscopía por Crioelectrón , Hemo/química , Hemoglobinas/química , Humanos , Hierro/metabolismo
12.
Nature ; 602(7897): 529-533, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35140402

RESUMEN

Type A GABA (γ-aminobutyric acid) receptors represent a diverse population in the mammalian brain, forming pentamers from combinations of α-, ß-, γ-, δ-, ε-, ρ-, θ- and π-subunits1. αß, α4ßδ, α6ßδ and α5ßγ receptors favour extrasynaptic localization, and mediate an essential persistent (tonic) inhibitory conductance in many regions of the mammalian brain1,2. Mutations of these receptors in humans are linked to epilepsy and insomnia3,4. Altered extrasynaptic receptor function is implicated in insomnia, stroke and Angelman and Fragile X syndromes1,5, and drugs targeting these receptors are used to treat postpartum depression6. Tonic GABAergic responses are moderated to avoid excessive suppression of neuronal communication, and can exhibit high sensitivity to Zn2+ blockade, in contrast to synapse-preferring α1ßγ, α2ßγ and α3ßγ receptor responses5,7-12. Here, to resolve these distinctive features, we determined structures of the predominantly extrasynaptic αß GABAA receptor class. An inhibited state bound by both the lethal paralysing agent α-cobratoxin13 and Zn2+ was used in comparisons with GABA-Zn2+ and GABA-bound structures. Zn2+ nullifies the GABA response by non-competitively plugging the extracellular end of the pore to block chloride conductance. In the absence of Zn2+, the GABA signalling response initially follows the canonical route until it reaches the pore. In contrast to synaptic GABAA receptors, expansion of the midway pore activation gate is limited and it remains closed, reflecting the intrinsic low efficacy that characterizes the extrasynaptic receptor. Overall, this study explains distinct traits adopted by αß receptors that adapt them to a role in tonic signalling.


Asunto(s)
Agonistas de Receptores de GABA-A , Antagonistas de Receptores de GABA-A , Receptores de GABA-A , Animales , Proteínas Neurotóxicas de Elápidos , Agonistas de Receptores de GABA-A/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Humanos , Mamíferos/metabolismo , Inhibición Neural/fisiología , Neuronas/metabolismo , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Zinc , Ácido gamma-Aminobutírico/metabolismo
13.
Nature ; 601(7894): 643-648, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34987222

RESUMEN

The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) has a central role in non-homologous end joining, one of the two main pathways that detect and repair DNA double-strand breaks (DSBs) in humans1,2. DNA-PKcs is of great importance in repairing pathological DSBs, making DNA-PKcs inhibitors attractive therapeutic agents for cancer in combination with DSB-inducing radiotherapy and chemotherapy3. Many of the selective inhibitors of DNA-PKcs that have been developed exhibit potential as treatment for various cancers4. Here we report cryo-electron microscopy (cryo-EM) structures of human DNA-PKcs natively purified from HeLa cell nuclear extracts, in complex with adenosine-5'-(γ-thio)-triphosphate (ATPγS) and four inhibitors (wortmannin, NU7441, AZD7648 and M3814), including drug candidates undergoing clinical trials. The structures reveal molecular details of ATP binding at the active site before catalysis and provide insights into the modes of action and specificities of the competitive inhibitors. Of note, binding of the ligands causes movement of the PIKK regulatory domain (PRD), revealing a connection between the p-loop and PRD conformations. Electrophoretic mobility shift assay and cryo-EM studies on the DNA-dependent protein kinase holoenzyme further show that ligand binding does not have a negative allosteric or inhibitory effect on assembly of the holoenzyme complex and that inhibitors function through direct competition with ATP. Overall, the structures described in this study should greatly assist future efforts in rational drug design targeting DNA-PKcs, demonstrating the potential of cryo-EM in structure-guided drug development for large and challenging targets.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Proteína Quinasa Activada por ADN , Adenosina Trifosfato , Dominio Catalítico , Microscopía por Crioelectrón , ADN/metabolismo , Reparación del ADN , Proteína Quinasa Activada por ADN/metabolismo , Células HeLa , Holoenzimas/metabolismo , Humanos , Autoantígeno Ku/metabolismo , Piridazinas , Quinazolinas
14.
Protein Sci ; 31(2): 333-344, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34719824

RESUMEN

The molecular mechanisms that drive the infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-the causative agent of coronavirus disease 2019 (COVID-19)-are under intense current scrutiny to understand how the virus operates and to uncover ways in which the disease can be prevented or alleviated. Recent proteomic screens of the interactions between viral and host proteins have identified the human proteins targeted by SARS-CoV-2. The DNA polymerase α (Pol α)-primase complex or primosome-responsible for initiating DNA synthesis during genomic duplication-was identified as a target of nonstructural protein 1 (nsp1), a major virulence factor in the SARS-CoV-2 infection. Here, we validate the published reports of the interaction of nsp1 with the primosome by demonstrating direct binding with purified recombinant components and providing a biochemical characterization of their interaction. Furthermore, we provide a structural basis for the interaction by elucidating the cryo-electron microscopy structure of nsp1 bound to the primosome. Our findings provide biochemical evidence for the reported targeting of Pol α by the virulence factor nsp1 and suggest that SARS-CoV-2 interferes with Pol α's putative role in the immune response during the viral infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Proteínas no Estructurales Virales , Microscopía por Crioelectrón , ADN Polimerasa I , ADN Primasa , Humanos , Proteómica , Proteínas no Estructurales Virales/genética , Factores de Virulencia
15.
Mol Microbiol ; 117(1): 102-120, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34415624

RESUMEN

In organisms from all domains of life, multi-enzyme assemblies play central roles in defining transcript lifetimes and facilitating RNA-mediated regulation of gene expression. An assembly dedicated to such roles, known as the RNA degradosome, is found amongst bacteria from highly diverse lineages. About a fifth of the assembly mass of the degradosome of Escherichia coli and related species is predicted to be intrinsically disordered - a property that has been sustained for over a billion years of bacterial molecular history and stands in marked contrast to the high degree of sequence variation of that same region. Here, we characterize the conformational dynamics of the degradosome using a hybrid structural biology approach that combines solution scattering with ad hoc ensemble modelling, cryo-electron microscopy, and other biophysical methods. The E. coli degradosome can form punctate bodies in vivo that may facilitate its functional activities, and based on our results, we propose an electrostatic switch model to account for the propensity of the degradosome to undergo programmable puncta formation.


Asunto(s)
Endorribonucleasas , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Complejos Multienzimáticos , Polirribonucleótido Nucleotidiltransferasa , ARN Helicasas , ARN Bacteriano/metabolismo , Dominio Catalítico , Microscopía por Crioelectrón , Ensayo de Cambio de Movilidad Electroforética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/genética , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Estructurales , Mutación , Procesamiento Postranscripcional del ARN , ARN Bacteriano/genética , Ribonucleasas/genética , Ribonucleasas/metabolismo , Electricidad Estática , Tomografía
16.
Mol Cell ; 81(16): 3400-3409.e3, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34352203

RESUMEN

Non-homologous end joining (NHEJ) is one of two critical mechanisms utilized in humans to repair DNA double-strand breaks (DSBs). Unrepaired or incorrect repair of DSBs can lead to apoptosis or cancer. NHEJ involves several proteins, including the Ku70/80 heterodimer, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), X-ray cross-complementing protein 4 (XRCC4), XRCC4-like factor (XLF), and ligase IV. These core proteins bind DSBs and ligate the damaged DNA ends. However, details of the structural assembly of these proteins remain unclear. Here, we present cryo-EM structures of NHEJ supercomplexes that are composed of these core proteins and DNA, revealing the detailed structural architecture of this assembly. We describe monomeric and dimeric forms of this supercomplex and also propose the existence of alternate dimeric forms of long-range synaptic complexes. Finally, we show that mutational disruption of several structural features within these NHEJ complexes negatively affects DNA repair.


Asunto(s)
ADN Ligasa (ATP)/ultraestructura , Enzimas Reparadoras del ADN/ultraestructura , Proteína Quinasa Activada por ADN/ultraestructura , Proteínas de Unión al ADN/ultraestructura , Complejos Multiproteicos/ultraestructura , Apoptosis/genética , Microscopía por Crioelectrón , Roturas del ADN de Doble Cadena , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades/genética , ADN Ligasa (ATP)/genética , Reparación del ADN/genética , Enzimas Reparadoras del ADN/genética , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/ultraestructura , Complejos Multiproteicos/genética , Fosforilación/genética
17.
Structure ; 29(8): 899-912.e4, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-33444527

RESUMEN

Resolution advances in cryoelectron microscopy (cryo-EM) now offer the possibility to visualize structural effects of naturally occurring resistance mutations in proteins and also of understanding the binding mechanisms of small drug molecules. In Mycobacterium tuberculosis the multifunctional heme enzyme KatG is indispensable for activation of isoniazid (INH), a first-line pro-drug for treatment of tuberculosis. We present a cryo-EM methodology for structural and functional characterization of KatG and INH resistance variants. The cryo-EM structure of the 161 kDa KatG dimer in the presence of INH is reported to 2.7 Å resolution allowing the observation of potential INH binding sites. In addition, cryo-EM structures of two INH resistance variants, identified from clinical isolates, W107R and T275P, are reported. In combination with electronic absorbance spectroscopy our cryo-EM approach reveals how these resistance variants cause disorder in the heme environment preventing heme uptake and retention, providing insight into INH resistance.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Catalasa/química , Catalasa/metabolismo , Farmacorresistencia Bacteriana , Variación Genética , Mycobacterium tuberculosis/enzimología , Proteínas Bacterianas/genética , Sitios de Unión , Catalasa/genética , Microscopía por Crioelectrón , Cristalografía por Rayos X , Isoniazida/farmacología , Modelos Moleculares , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Conformación Proteica
18.
Nat Struct Mol Biol ; 28(1): 13-19, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33077952

RESUMEN

DNA double-strand breaks are the most dangerous type of DNA damage and, if not repaired correctly, can lead to cancer. In humans, Ku70/80 recognizes DNA broken ends and recruits the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to form DNA-dependent protein kinase holoenzyme (DNA-PK) in the process of non-homologous end joining (NHEJ). We present a 2.8-Å-resolution cryo-EM structure of DNA-PKcs, allowing precise amino acid sequence registration in regions uninterpreted in previous 4.3-Å X-ray maps. We also report a cryo-EM structure of DNA-PK at 3.5-Å resolution and reveal a dimer mediated by the Ku80 C terminus. Central to dimer formation is a domain swap of the conserved C-terminal helix of Ku80. Our results suggest a new mechanism for NHEJ utilizing a DNA-PK dimer to bring broken DNA ends together. Furthermore, drug inhibition of NHEJ in combination with chemo- and radiotherapy has proved successful, making these models central to structure-based drug targeting efforts.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/genética , Proteína Quinasa Activada por ADN/metabolismo , ADN/genética , Autoantígeno Ku/metabolismo , Secuencia de Aminoácidos/genética , Microscopía por Crioelectrón , Cristalografía por Rayos X , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Dimerización , Humanos , Conformación Molecular
19.
Methods Mol Biol ; 2209: 425-432, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33201484

RESUMEN

The method of co-immunoprecipitation (co-IP or pulldown) enables the identification of proteins interacting in macromolecular assemblies, through the purification of a key protein by affinity chromatography using specific antibodies immobilized on a matrix. The advantages of using epitope-tagged proteins include the ability to use commercially available antibodies for affinity purifications, and typically they do not disrupt the structure of the protein complexes. Here we describe the utilization of an epitope-tagged version of Caulobacter crescentus RNase E in order to determine the composition of the RNA degradosome under different growth conditions. Several proteins that interact with the RNA degradosome were identified.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endorribonucleasas/metabolismo , Complejos Multienzimáticos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Helicasas/metabolismo , ARN Bacteriano/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo
20.
Nature ; 587(7832): 152-156, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33087931

RESUMEN

The three-dimensional positions of atoms in protein molecules define their structure and their roles in biological processes. The more precisely atomic coordinates are determined, the more chemical information can be derived and the more mechanistic insights into protein function may be inferred. Electron cryo-microscopy (cryo-EM) single-particle analysis has yielded protein structures with increasing levels of detail in recent years1,2. However, it has proved difficult to obtain cryo-EM reconstructions with sufficient resolution to visualize individual atoms in proteins. Here we use a new electron source, energy filter and camera to obtain a 1.7 Å resolution cryo-EM reconstruction for a human membrane protein, the ß3 GABAA receptor homopentamer3. Such maps allow a detailed understanding of small-molecule coordination, visualization of solvent molecules and alternative conformations for multiple amino acids, and unambiguous building of ordered acidic side chains and glycans. Applied to mouse apoferritin, our strategy led to a 1.22 Å resolution reconstruction that offers a genuine atomic-resolution view of a protein molecule using single-particle cryo-EM. Moreover, the scattering potential from many hydrogen atoms can be visualized in difference maps, allowing a direct analysis of hydrogen-bonding networks. Our technological advances, combined with further approaches to accelerate data acquisition and improve sample quality, provide a route towards routine application of cryo-EM in high-throughput screening of small molecule modulators and structure-based drug discovery.


Asunto(s)
Apoferritinas/química , Apoferritinas/ultraestructura , Microscopía por Crioelectrón/instrumentación , Microscopía por Crioelectrón/métodos , Receptores de GABA-A/química , Receptores de GABA-A/ultraestructura , Imagen Individual de Molécula/métodos , Animales , Microscopía por Crioelectrón/normas , Descubrimiento de Drogas , Humanos , Ratones , Modelos Moleculares , Polisacáridos/química , Polisacáridos/ultraestructura , Imagen Individual de Molécula/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...