Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microbiol Insights ; 16: 11786361221150759, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895787

RESUMEN

Kerosene is widely used in Ethiopia as a household fuel (for lighting and heating), as a solvent in paint and grease, and as a lubricant in glass cutting. It causes environmental pollution and escorts to loss of ecological functioning and health problems. Therefore, this research was designed to isolate, identify, and characterize indigenous kerosene-degrading bacteria that are effective in cleaning ecological units that have been contaminated by kerosene. Soil samples were collected from hydrocarbon-contaminated sites (flower farms, garages, and old-aged asphalt roads) and spread-plated on mineral salt medium (Bushnell Hass Mineral Salts Agar Medium: BHMS), which consists of kerosene as the only carbon source. Seven kerosene-degrading bacterial species were isolated, 2 from flower farms, 3 from garage areas, and 2 from asphalt areas. Three genera from hydrocarbon-contaminated sites were identified, including Pseudomonas, Bacillus, and Acinetobacter using biochemical characterization and the Biolog database. Growth studies in the presence of various concentrations of kerosene (1% and 3% v/v) showed that the bacterial isolates could metabolize kerosene as energy and biomass. Thereby, a gravimetric study was performed on bacterial strains that proliferated well on a BHMS medium with kerosene. Remarkably, bacterial isolates were able to degrade 5% kerosene from 57.2% to 91% in 15 days. Moreover, 2 of the most potent isolates, AUG2 and AUG1, resulted in 85% and 91% kerosene degradation, respectively, when allowed to grow on a medium containing kerosene. In addition, 16S rRNA gene analysis indicated that strain AAUG1 belonged to Bacillus tequilensis, whereas isolate AAUG showed the highest similarity to Bacillus subtilis. Therefore, these indigenous bacterial isolates have the potential to be applied for kerosene removal from hydrocarbon-contaminated sites and the development of remediation approaches.

2.
Acta Virol ; 66(1): 3-10, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35380860

RESUMEN

Sugarcane bacilliform virus (SCBV) is an economically important virus limiting sugarcane production worldwide. Although Ethiopia is a major sugarcane producer, and virus-like symptoms are frequently observed in sugarcane fields, there is a complete lack of information as to the occurrence, distribution and molecular properties of SCBV. This study was aimed to identify and characterize SCBV isolates in Ethiopia using molecular methods. Out of 292 leaf samples collected and tested by PCR, 76 samples (26% incidence level) were found SCBV-positive. Nucleotide sequence analysis results showed that three Ethiopian isolates (SCBV-EtS3, SCBV-EtS6 and SCBV-EtC10) shared high level of nucleotide identity (99.5-100%) among themselves and with SCBV isolates from China (accession numbers MH037614 and MH037915). Another isolate, SCBV-EtC2, shared maximum identity of 78% with the other three SCBV isolates from Ethiopia and 99.8% with SCBV isolates from China (KM214357 and KM214307). Based on phylogenetic analysis, isolates from Ethiopia were segregated into two different clusters. Isolates SCBV-EtS3, SCBV-EtS6 and SCBV-EtC10 clustered with SCBV-Q group and SCBV-EtC2 with SCBV-H group. This study provides information on the occurrence of SCBV for the first time in Ethiopia and also contributes to the understanding of the genetic diversity of SCBV. Keywords: Caulimoviridae; RNase H, Saccharum spp.; Sugarcane bacilliform virus.


Asunto(s)
Badnavirus , Saccharum , Badnavirus/genética , Etiopía/epidemiología , Filogenia , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA