Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Bone ; 176: 116863, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37527697

RESUMEN

The current clinical assessment of fracture risk lacks information about the inherent quality of a person's bone tissue. Working toward an imaging-based approach to quantify both a bone tissue quality marker (tissue hydration as water bound to the matrix) and a bone microstructure marker (porosity as water in pores), we hypothesized that the concentrations of bound water (Cbw) are lower and concentrations of pore water (Cpw) are higher in patients with osteoporosis (OP) than in age- and sex-matched adults without the disease. Using recent developments in ultrashort echo time (UTE) magnetic resonance imaging (MRI), maps of Cbw and Cpw were acquired from the uninjured distal third radius (Study 1) of 20 patients who experienced a fragility fracture of the distal radius (Fx) and 20 healthy controls (Non-Fx) and from the tibia mid-diaphysis (Study 2) of 30 women with clinical OP (low T-scores) and 15 women without OP (normal T-scores). In Study 1, Cbw was significantly lower (p = 0.0018) and Cpw was higher (p = 0.0022) in the Fx than in the Non-Fx group. In forward stepwise, logistic regression models using Bayesian Information Criterion for selecting the best set of predictors (from imaging parameters, age, BMI, and DXA scanner type), the area-under-the-receiver operator characteristics-curve (AUC with 95 % confidence intervals) was 0.73 (0.56, 0.86) for hip aBMD (best predictors without MRI) and 0.86 (0.70, 0.95) for the combination of Cbw and Cpw (best predictors overall). In Study 2, Cbw was significantly lower (p = 0.0005) in women with OP (23.8 ± 4.3 1H mol/L) than in women without OP (29.9 ± 6.4 1H mol/L); Cpw was significantly higher by estimate of 2.9 1H mol/L (p = 0.0298) with clinical OP, but only when accounting for the type of UTE-MRI scan with 3D providing higher values than 2D (p < 0.0001). Lastly, Cbw, but not Cpw, was sensitive to bone forming osteoporosis medications over 12-months. UTE-MRI-derived measurements of bound and pore water concentrations are potential, aBMD-independent predictors of fracture risk.


Asunto(s)
Fracturas Óseas , Osteoporosis , Adulto , Humanos , Femenino , Agua , Teorema de Bayes , Imagen por Resonancia Magnética/métodos , Fracturas Óseas/diagnóstico por imagen , Osteoporosis/diagnóstico por imagen , Medición de Riesgo , Densidad Ósea
2.
J Magn Reson ; 352: 107479, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37285709

RESUMEN

PURPOSE: MR microscopy is in principle capable of producing images at cellular resolution (<10 µm), but various factors limit the quality achieved in practice. A recognized limit on the signal to noise ratio and spatial resolution is the dephasing of transverse magnetization caused by diffusion of spins in strong gradients. Such effects may be reduced by using phase encoding instead of frequency encoding read-out gradients. However, experimental demonstration of the quantitative benefits of phase encoding are lacking, and the exact conditions in which it is preferred are not clearly established. We quantify the conditions where phase encoding outperforms a readout gradient with emphasis on the detrimental effects of diffusion on SNR and resolution. METHODS: A 15.2 T Bruker MRI scanner, with 1 T/m gradients, and micro solenoid RF coils < 1 mm in diameter, were used to quantify diffusion effects on resolution and the signal to noise ratio of frequency and phase encoded acquisitions. Frequency and phase encoding's spatial resolution and SNR per square root time were calculated and measured for images at the diffusion limited resolution. The point spread function was calculated and measured for phase and frequency encoding using additional constant time phase gradients with voxels 3-15 µm in dimension. RESULTS: The effect of diffusion during the readout gradient on SNR was experimentally demonstrated. The achieved resolutions of frequency and phase encoded acquisitions were measured via the point-spread-function and shown to be lower than the nominal resolution. SNR per square root time and actual resolution were calculated for a wide range of maximum gradient amplitudes, diffusion coefficients, and relaxation properties. The results provide a practical guide on how to choose between phase encoding and a conventional readout. Images of excised rat spinal cord at 10 µm × 10 µm in-plane resolution demonstrate phase encoding's benefits in the form of higher measured resolution and higher SNR than the same image acquired with a conventional readout. CONCLUSION: We provide guidelines to determine the extent to which phase encoding outperforms frequency encoding in SNR and resolution given a wide range of voxel sizes, sample, and hardware properties.


Asunto(s)
Imagen por Resonancia Magnética , Microscopía , Imagen por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética , Relación Señal-Ruido
3.
Adv Sci (Weinh) ; : e2301232, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37357139

RESUMEN

Magnetic resonance imaging (MRI) is widely used in clinical care and medical research. The signal-to-noise ratio (SNR) in the measurement affects parameters that determine the diagnostic value of the image, such as the spatial resolution, contrast, and scan time. Surgically implanted radiofrequency coils can increase SNR of subsequent MRI studies of adjacent tissues. The resulting benefits in SNR are, however, balanced by significant risks associated with surgically removing these coils or with leaving them in place permanently. As an alternative, here the authors report classes of implantable inductor-capacitor circuits made entirely of bioresorbable organic and inorganic materials. Engineering choices for the designs of an inductor and a capacitor provide the ability to select the resonant frequency of the devices to meet MRI specifications (e.g., 200 MHz at 4.7 T MRI). Such devices enhance the SNR and improve the associated imaging capabilities. These simple, small bioelectronic systems function over clinically relevant time frames (up to 1 month) at physiological conditions and then disappear completely by natural mechanisms of bioresorption, thereby eliminating the need for surgical extraction. Imaging demonstrations in a nerve phantom and a human cadaver suggest that this technology has broad potential for post-surgical monitoring/evaluation of recovery processes.

4.
NMR Biomed ; : e4951, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37070215

RESUMEN

Relaxation rates R1ρ in the rotating frame measured by spin-lock methods at very low locking amplitudes (≤ 100 Hz) are sensitive to the effects of water diffusion in intrinsic gradients and may provide information on tissue microvasculature, but accurate estimates are challenging in the presence of B0 and B1 inhomogeneities. Although composite pulse preparations have been developed to compensate for nonuniform fields, the transverse magnetization comprises different components and the spin-lock signals measured do not decay exponentially as a function of locking interval at low locking amplitudes. For example, during a typical preparation sequence, some of the magnetization in the transverse plane is nutated to the Z-axis and later tipped back, and so does not experience R1ρ relaxation. As a result, if the spin-lock signals are fit to a monoexponential decay with locking interval, there are residual errors in quantitative estimates of relaxation rates R1ρ and their dispersion with weak locking fields. We developed an approximate theoretical analysis to model the behaviors of the different components of the magnetization, which provides a means to correct these errors. The performance of this correction approach was evaluated both through numerical simulations and on human brain images at 3 T, and compared with a previous correction method using matrix multiplication. Our correction approach has better performance than the previous method at low locking amplitudes. Through careful shimming, the correction approach can be applied in studies using low spin-lock amplitudes to assess the contribution of diffusion to R1ρ dispersion and to derive estimates of microvascular sizes and spacings. The results of imaging eight healthy subjects suggest that R1ρ dispersion in human brain at low locking fields arises from diffusion among inhomogeneities that generate intrinsic gradients on a scale of capillaries (~7.4 ± 0.5 µm).

5.
Magn Reson Med ; 90(3): 1151-1165, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37093746

RESUMEN

PURPOSE: We aimed to compare multiple MRI parameters, including relaxation rates ( R 1 $$ {R}_1 $$ , R 2 $$ {R}_2 $$ , and R 1 ρ $$ {R}_{1\rho } $$ ), ADC from diffusion weighted imaging, pool size ratio (PSR) from quantitative magnetization transfer, and measures of exchange from spin-lock imaging ( S ρ $$ {S}_{\rho } $$ ), for assessing and predicting the severity of polycystic kidney disease (PKD) over time. METHODS: Pcy/Pcy mice with CD1 strain, a mouse model of autosomal dominant PKD, were imaged at 5, 9, and 26 wk of age using a 7T MRI system. Twelve-week normal CD1 mice were used as controls. Post-mortem paraffin tissue sections were stained using hematoxylin and eosin and picrosirius red to identify histological changes. RESULTS: Histology detected segmental cyst formation in the early stage (week 5) and progression of PKD over time in Pcy kidneys. In T 2 $$ {T}_2 $$ -weighted images, small cysts appeared locally in cystic kidneys in week 5 and gradually extended to the whole cortex and outer stripe of outer medulla region from week 5 to week 26. Regional PSR, R 1 $$ {R}_1 $$ , R 2 $$ {R}_2 $$ , and R 1 ρ $$ {R}_{1\rho } $$ decreased consistently over time compared to normal kidneys, with significant changes detected in week 5. Among all the MRI measures, R 2 $$ {R}_2 $$ and R 1 ρ $$ {R}_{1\rho } $$ allow highest detectability to PKD, while PSR and R 1 $$ {R}_1 $$ have highest correlation with pathological indices of PKD. Using optimum MRI parameters as regressors, multiple linear regression provides reliable prediction of PKD progression. CONCLUSION: R 2 $$ {R}_2 $$ , R 1 $$ {R}_1 $$ , and PSR are sensitive indicators of the presence of PKD. Multiparametric MRI allows a comprehensive analysis of renal changes caused by cyst formation and expansion.


Asunto(s)
Quistes , Imágenes de Resonancia Magnética Multiparamétrica , Enfermedades Renales Poliquísticas , Ratones , Animales , Enfermedades Renales Poliquísticas/diagnóstico por imagen , Enfermedades Renales Poliquísticas/patología , Riñón/diagnóstico por imagen , Riñón/patología , Imagen por Resonancia Magnética , Quistes/patología , Modelos Animales de Enfermedad
6.
Neuroimage Clin ; 37: 103366, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36889101

RESUMEN

Much previous neuroimaging research in Alzheimer's disease has focused on the roles of amyloid and tau proteins, but recent studies have implicated microvascular changes in white matter as early indicators of damage related to later dementia. We used MRI to derive novel, non-invasive measurements of R1ρ dispersion using different locking fields to characterize variations of microvascular structure and integrity in brain tissues. We developed a non-invasive 3D R1ρ dispersion imaging technique using different locking fields at 3T. We acquired MR images and cognitive assessments of participants with mild cognitive impairment (MCI) and compared them to age-matched healthy controls in a cross-sectional study. After providing informed consent, 40 adults aged 62 to 82 years (n = 17 MCI) were included in this study. White matter ΔR1ρ-fraction measured by R1ρ dispersion imaging showed a strong correlation with the cognitive status of older adults (ßstd = -0.4, p-value < 0.01) independent of age, in contrast to other conventional MRI markers such as T2, R1ρ, and white matter hyperintense lesion volume (WMHs) measured with T2-FLAIR. The correlation of WMHs with cognitive status was no longer significant after adjusting for age and sex in linear regression analysis, and the size of the regression coefficient was substantially decreased (53% lower). This work establishes a new non-invasive method that potentially characterizes impairment of the microvascular structure of white matter in MCI patients compared to healthy controls. The application of this method in longitudinal studies would improve our fundamental understanding of the pathophysiologic changes that accompany abnormal cognitive decline with aging and help identify potential targets for treatment of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Sustancia Blanca , Anciano , Humanos , Enfermedad de Alzheimer/patología , Estudios Transversales , Imagen por Resonancia Magnética , Sustancia Blanca/patología , Persona de Mediana Edad , Anciano de 80 o más Años
7.
Magn Reson Med ; 89(2): 767-773, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36226656

RESUMEN

PURPOSE: Extend fast, two-dimensional (2D) methods of bound and pore water mapping in bone to arbitrary slice orientation. METHODS: To correct for slice profile artifacts caused by gradient errors of half pulse 2D ultra-short echo time (UTE), we developed a library of predistorted gradient waveforms that can be used to interpolate optimized gradient waveforms for 2D UTE slice selection. We also developed a method to estimate and correct for a bulk phase difference between the two half pulse excitations used for 2D UTE signal excitation. Bound water images were acquired in three healthy subjects with adiabatic inversion recovery prepared 2D UTE, while pore water images were acquired after short-T2 signals were suppressed with double adiabatic inversion recovery preparation. The repeatability of bound and pore water imaging with 2D UTE was tested by repeating acquisitions after repositioning. RESULTS: The library-based interpolation of optimized slice select gradient waveforms combined with the method to estimate bulk phase between two excitations provided compact slice profiles for half pulse excited 2D UTE. Quantitative bound and pore water values were highly repeatable-the pooled SD of bound water across all three subjects was 0.38 mol 1 $$ {}^1 $$ H/L, while pooled SD of pore water was 0.30 mol 1 $$ {}^1 $$ H/L. CONCLUSION: Fast, quantitative, 2D UTE-based bound and pore water images can be acquired at arbitrary oblique orientations after correcting for errors in the slice select gradient waveform and bulk phase shift between the two half acquisitions.


Asunto(s)
Imagen por Resonancia Magnética , Agua , Humanos , Imagen por Resonancia Magnética/métodos , Hueso Cortical , Huesos/diagnóstico por imagen , Artefactos
8.
Comput Methods Biomech Biomed Engin ; 26(8): 905-916, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35822868

RESUMEN

Ultrashort echo time (UTE) MRI techniques can be used to image the concentration of water in bones. Particularly, quantitative MRI imaging of collagen-bound water concentration (Cbw) and pore water concentration (Cpw) in cortical bone have been shown as potential biomarkers for bone fracture risk. To investigate the effect of Cbw and Cpw on the evaluation of bone mechanical properties, MRI-based finite element models of cadaver radii were generated with tissue material properties derived from 3 D maps of Cbw and Cpw measurements. Three-point bending tests were simulated by means of the finite element method to predict bending properties of the bone and the results were compared with those from direct mechanical testing. The study results demonstrate that these MRI-derived measures of Cbw and Cpw improve the prediction of bone mechanical properties in cadaver radii and have the potential to be useful in assessing patient-specific bone fragility risk.


Asunto(s)
Imagen por Resonancia Magnética , Agua , Humanos , Agua/análisis , Análisis de Elementos Finitos , Porosidad , Imagen por Resonancia Magnética/métodos , Cadáver
9.
NMR Biomed ; 36(5): e4878, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36418236

RESUMEN

MRI measures of bound and/or pore water concentration in cortical bone offer potential diagnostics of bone fracture risk. The transverse relaxation characteristics of both bound and pore water are relatively well understood and have been used to design clinical MRI pulse sequences to image each water pool quantitatively. However, these methods are also sensitive to longitudinal relaxation characteristics, which have been less well studied. Here, spectroscopic relaxometry measurements of 31 human cortical bone specimens provided a more detailed picture of T 1 of both bound and pore water. The results included mean, standard deviation, and range of T 1 spectra from both bound and pore water, as well as novel presentations of the 2D T 1 - T 2 distribution of pore water. Importantly, for each sample the pore water T 1 spectrum was found to span more than one order of magnitude and varied substantially across the 31 sample studies. Because many existing methods assume pore water T 1 to be mono-exponential and constant across individuals, the results were used to compute the potential effect neglecting this intra- and intersample T 1 variation on accurate MRI measurement of both bound and pore water concentrations. The greatest effect was found for adiabatic inversion recovery (AIR) based measurements of bound water concentration, which showed an average of 8.8% and as much as 37% error when using a common mono-exponential assumption of pore water T 1 . Despite these errors, the simulated AIR measurements were still moderately well correlated with the bound water concentrations derived from the spectroscopic data.


Asunto(s)
Huesos , Agua , Humanos , Porosidad , Huesos/diagnóstico por imagen , Hueso Cortical/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
10.
NMR Biomed ; 35(10): e4786, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35704387

RESUMEN

Tubular atrophy and fibrosis are pathological changes that determine the prognosis of kidney disease induced by acute kidney injury (AKI). We aimed to evaluate multiple magnetic resonance imaging (MRI) parameters, including pool size ratio (PSR) from quantitative magnetization transfer, relaxation rates, and measures from spin-lock imaging ( R 1 ρ and S ρ ), for assessing the pathological changes associated with AKI-induced kidney disease. Eight-week-old male C57BL/6 J mice first underwent unilateral ischemia reperfusion injury (IRI) induced by reperfusion after 45 min of ischemia. They were imaged using a 7T MRI system 56 days after the injury. Paraffin tissue sections were stained using Masson trichrome and picrosirius red to identify histopathological changes such as tubular atrophy and fibrosis. Histology detected extensive tubular atrophy and moderate fibrosis in the cortex and outer stripe of the outer medulla (CR + OSOM) and more prominent fibrosis in the inner stripe of the outer medulla (ISOM) of IRI kidneys. In the CR + OSOM region, evident decreases in PSR, R 1 , R 2 , R 1 ρ , and S ρ showed in IRI compared with contralateral kidneys, with PSR and S ρ exhibiting the most significant changes. In addition, the exchange parameter S ρ dropped by the largest degree among all the MRI parameters, while R 2 * increased significantly. In the ISOM of IRI kidneys, PSR increased while S ρ kept decreasing. R 2 , R 1 ρ , and R 2 * all increased due to more severe fibrosis in this region. Among MRI measures, PSR and R 1 ρ showed the highest detectability of renal changes no matter whether tubular atrophy or fibrosis dominated. R 2 * and S ρ could be more specific to a single pathological event than other MRI measures because only R 2 * increased and S ρ decreased consistently when either fibrosis or tubular atrophy dominated, and their correlations with fibrosis scores were higher than other MRI measures. Multiparametric MRI may enable a more comprehensive analysis of histopathological changes following AKI.


Asunto(s)
Lesión Renal Aguda , Imágenes de Resonancia Magnética Multiparamétrica , Daño por Reperfusión , Lesión Renal Aguda/diagnóstico por imagen , Lesión Renal Aguda/etiología , Animales , Atrofia/complicaciones , Atrofia/patología , Fibrosis , Isquemia/patología , Riñón/diagnóstico por imagen , Riñón/patología , Imagen por Resonancia Magnética/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Reperfusión/efectos adversos , Daño por Reperfusión/complicaciones , Daño por Reperfusión/diagnóstico por imagen , Daño por Reperfusión/patología
11.
Magn Reson Imaging ; 84: 1-11, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34052306

RESUMEN

Measurements of the variations of spin-locking relaxation rates (R1ρ) with locking field amplitude allow the derivation of quantitative parameters that describe different dynamic processes, such as slow molecular motions, chemical exchange and diffusion. In some samples, changes in R1ρ values between locking frequency 0 and 200 Hz may be dominated mainly by diffusion of water in intrinsic field gradients, while those at higher locking fields are due to exchange processes. The exchange and diffusion effects act independently of each other, as confirmed by simulation and experimentally. In tissues, the relevant intrinsic field gradients may arise from the magnetic inhomogeneities caused by microvascular blood so that R1ρ dispersion over weak locking field amplitudes (≤ 200 Hz) is affected by changes in capillary density and geometry. Here we first review the theoretical and experimental background to the interpretation of R1ρ dispersions caused by intrinsic magnetic susceptibility variations within the tissue. We then provide new empirical results of R1ρ dispersion imaging of the human brain and skeletal muscle at low locking field amplitudes for the first time and identify potential applications of R1ρ dispersion imaging in clinical studies.


Asunto(s)
Aumento de la Imagen , Imagen por Resonancia Magnética , Simulación por Computador , Difusión , Humanos , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Agua/química
12.
J Magn Reson ; 327: 106945, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33784601

RESUMEN

Accurate measurement of gradient waveform errors can often improve image quality in sequences with time varying readout and excitation waveforms. Self-encoding or offset-slice sequences are commonly used to measure gradient waveforms. However, the self-encoding method requires a long scan time, while the offset-slice method is often low precision, requiring the thickness of the excited slice to be small compared to the maximal k-space encoded by the test waveform. This work introduces a hybrid these methods, called variable-prephasing. Using a straightforward algebraic model, we demonstrate that variable-prephasing improves the precision of the waveform measurement by allowing acquisition of larger slice thicknesses. Experiments in a phantom were used to validate the theoretical predictions, showing that the precision of variable-prephasing gradient waveform measurements improves with increasing slice thickness.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Algoritmos , Fantasmas de Imagen
13.
Neuroimage ; 227: 117619, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33301942

RESUMEN

Noninvasive estimation of mean axon diameter presents a new opportunity to explore white matter plasticity, development, and pathology. Several diffusion-weighted MRI (DW-MRI) methods have been proposed to measure the average axon diameter in white matter, but they typically require many diffusion encoding measurements and complicated mathematical models to fit the signal to multiple tissue compartments, including intra- and extra-axonal spaces. Here, Monte Carlo simulations uncovered a straightforward DW-MRI metric of axon diameter: the change in radial apparent diffusion coefficient estimated at different effective diffusion times, ΔD⊥. Simulations indicated that this metric increases monotonically within a relevant range of effective mean axon diameter while being insensitive to changes in extra-axonal volume fraction, axon diameter distribution, g-ratio, and influence of myelin water. Also, a monotonic relationship was found to exist for signals coming from both intra- and extra-axonal compartments. The slope in ΔD⊥ with effective axon diameter increased with the difference in diffusion time of both oscillating and pulsed gradient diffusion sequences.


Asunto(s)
Axones , Imagen de Difusión por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Algoritmos , Simulación por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Método de Montecarlo
14.
Obesity (Silver Spring) ; 28(7): 1292-1300, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32568462

RESUMEN

OBJECTIVE: Lipedema is characterized by pain, fatigue, and excessive adipose tissue and sodium accumulation of the lower extremities. This case-control study aims to determine whether sodium or vascular dysfunction is present in the central nervous system. METHODS: Brain magnetic resonance imaging was performed at 3 T in patients with lipedema (n = 15) and control (n = 18) participants matched for sex, age, race, and BMI. Standard anatomical imaging and intracranial angiography were applied to evaluate brain volume and vasculopathy, respectively; arterial spin labeling and sodium magnetic resonance imaging were applied to quantify cerebral blood flow (CBF) (milliliters per 100 grams of tissue/minute) and brain tissue sodium content (millimoles per liter), respectively. A Mann-Whitney U test (significance criteria P < 0.05) was applied to evaluate group differences. RESULTS: No differences in tissue volume, white matter hyperintensities, intracranial vasculopathy, or tissue sodium content were observed between groups. Gray matter CBF was elevated (P = 0.03) in patients with lipedema (57.2 ± 9.6 mL per 100 g/min) versus control participants (49.8 ± 9.1 mL per 100 g/min). CONCLUSIONS: Findings provide evidence that brain sodium and tissue fractions are similar between patients with lipedema and control participants and that patients with lipedema do not exhibit abnormal radiological indicators of intracranial vasculopathy or ischemic injury. Potential explanations for elevated CBF are discussed in the context of the growing literature on lipedema symptomatology and vascular dysfunction.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Circulación Cerebrovascular/fisiología , Lipedema/metabolismo , Lipedema/fisiopatología , Sodio/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Química Encefálica/fisiología , Estudios de Casos y Controles , Femenino , Humanos , Lipedema/diagnóstico , Lipedema/psicología , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Neuroimagen/métodos , Sodio/análisis
15.
Neuroimage ; 210: 116533, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31935520

RESUMEN

Conventional diffusion imaging uses pulsed gradient spin echo (PGSE) waveforms with diffusion times of tens of milliseconds (ms) to infer differences of white matter microstructure. The combined use of these long diffusion times with short diffusion times (<10 â€‹ms) enabled by oscillating gradient spin echo (OGSE) waveforms can enable more sensitivity to changes of restrictive boundaries on the scale of white matter microstructure (e.g. membranes reflecting the axon diameters). Here, PGSE and OGSE images were acquired at 4.7 â€‹T from 20 healthy volunteers aged 20-73 years (10 males). Mean, radial, and axial diffusivity, as well as fractional anisotropy were calculated in the genu, body and splenium of the corpus callosum (CC). Monte Carlo simulations were also conducted to examine the relationship of intra- and extra-axonal radial diffusivity with diffusion time over a range of axon diameters and distributions. The results showed elevated diffusivities with OGSE relative to PGSE in the genu and splenium (but not the body) in both males and females, but the OGSE-PGSE difference was greater in the genu for males. Females showed positive correlations of OGSE-PGSE diffusivity difference with age across the CC, whereas there were no such age correlations in males. Simulations of radial diffusion demonstrated that for axon sizes in human brain both OGSE and PGSE diffusivities were dominated by extra-axonal water, but the OGSE-PGSE difference nonetheless increased with area-weighted outer-axon diameter. Therefore, the lack of OGSE-PGSE difference in the body is not entirely consistent with literature that suggests it is composed predominantly of axons with large diameter. The greater OGSE-PGSE difference in the genu of males could reflect larger axon diameters than females. The OGSE-PGSE difference correlation with age in females could reflect loss of smaller axons at older ages. The use of OGSE with short diffusion times to sample the microstructural scale of restriction implies regional differences of axon diameters along the corpus callosum with preliminary results suggesting a dependence on age and sex.


Asunto(s)
Envejecimiento/patología , Axones/patología , Cuerpo Calloso/anatomía & histología , Imagen de Difusión Tensora/métodos , Caracteres Sexuales , Adulto , Factores de Edad , Anciano , Cuerpo Calloso/citología , Cuerpo Calloso/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Método de Montecarlo , Adulto Joven
16.
Magn Reson Med ; 81(6): 3503-3514, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30720206

RESUMEN

PURPOSE: Multi-exponential relaxometry is a powerful tool for characterizing tissue, but generally requires high image signal-to-noise ratio (SNR). This work evaluates the use of principal-component-analysis (PCA) denoising to mitigate these SNR demands and improve the precision of relaxometry measures. METHODS: PCA denoising was evaluated using both simulated and experimental MRI data. Bi-exponential transverse relaxation signals were simulated for a wide range of acquisition and sample parameters, and experimental data were acquired from three excised and fixed mouse brains. In both cases, standard relaxometry analysis was performed on both original and denoised image data, and resulting estimated signal parameters were compared. RESULTS: Denoising reduced the root-mean-square-error of parameters estimated from multi-exponential relaxometry by factors of ≈3×, for typical acquisition and sample parameters. Denoised images and subsequent parameter maps showed little or no signs of spatial artifact or loss of resolution. CONCLUSION: Experimental studies and simulations demonstrate that PCA denoising of MRI relaxometry data is an effective method of improving parameter precision without sacrificing image resolution. This simple yet important processing step thus paves the way for broader applicability of multi-exponential MRI relaxometry.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Análisis de Componente Principal/métodos , Algoritmos , Animales , Encéfalo/diagnóstico por imagen , Simulación por Computador , Ratones
17.
Ear Hear ; 39(3): 436-448, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29697497

RESUMEN

OBJECTIVES: The objectives of this study were to (1) identify essential hearing-critical job tasks for public safety and law enforcement personnel; (2) determine the locations and real-world noise environments where these tasks are performed; (3) characterize each noise environment in terms of its impact on the likelihood of effective speech communication, considering the effects of different levels of vocal effort, communication distances, and repetition; and (4) use this characterization to define an objective normative reference for evaluating the ability of individuals to perform essential hearing-critical job tasks in noisy real-world environments. DESIGN: Data from five occupational hearing studies performed over a 17-year period for various public safety agencies were analyzed. In each study, job task analyses by job content experts identified essential hearing-critical tasks and the real-world noise environments where these tasks are performed. These environments were visited, and calibrated recordings of each noise environment were made. The extended speech intelligibility index (ESII) was calculated for each 4-sec interval in each recording. These data, together with the estimated ESII value required for effective speech communication by individuals with normal hearing, allowed the likelihood of effective speech communication in each noise environment for different levels of vocal effort and communication distances to be determined. These likelihoods provide an objective norm-referenced and standardized means of characterizing the predicted impact of real-world noise on the ability to perform essential hearing-critical tasks. RESULTS: A total of 16 noise environments for law enforcement personnel and eight noise environments for corrections personnel were analyzed. Effective speech communication was essential to hearing-critical tasks performed in these environments. Average noise levels, ranged from approximately 70 to 87 dBA in law enforcement environments and 64 to 80 dBA in corrections environments. The likelihood of effective speech communication at communication distances of 0.5 and 1 m was often less than 0.50 for normal vocal effort. Likelihood values often increased to 0.80 or more when raised or loud vocal effort was used. Effective speech communication at and beyond 5 m was often unlikely, regardless of vocal effort. CONCLUSIONS: ESII modeling of nonstationary real-world noise environments may prove an objective means of characterizing their impact on the likelihood of effective speech communication. The normative reference provided by these measures predicts the extent to which hearing impairments that increase the ESII value required for effective speech communication also decrease the likelihood of effective speech communication. These predictions may provide an objective evidence-based link between the essential hearing-critical job task requirements of public safety and law enforcement personnel and ESII-based hearing assessment of individuals who seek to perform these jobs.


Asunto(s)
Pruebas Auditivas/métodos , Ruido en el Ambiente de Trabajo , Inteligibilidad del Habla , Práctica Clínica Basada en la Evidencia , Audición , Humanos , Modelos Teóricos , Enmascaramiento Perceptual , Policia , Prisiones , Prueba del Umbral de Recepción del Habla
18.
Magn Reson Med ; 77(3): 945-950, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28090655

RESUMEN

PURPOSE: MRI of cortical bone has the potential to offer new information about fracture risk. Current methods are typically performed with 3D acquisitions, which suffer from long scan times and are generally limited to extremities. This work proposes using 2D UTE with half pulses for quantitatively mapping bound and pore water in cortical bone. METHODS: Half-pulse 2D UTE methods were implemented on a 3T Philips Achieva scanner using an optimized slice-select gradient waveform, with preparation pulses to selectively image bound or pore water. The 2D methods were quantitatively compared with previously implemented 3D methods in the tibia in five volunteers. RESULTS: The mean difference between bound and pore water concentration acquired from 3D and 2D sequences was 0.6 and 0.9 mol 1 H/Lbone (3 and 12%, respectively). While 2D pore water methods tended to slightly overestimate concentrations relative to 3D methods, differences were less than scan-rescan uncertainty and expected differences between healthy and fracture-prone bones. CONCLUSION: Quantitative bound and pore water concentration mapping in cortical bone can be accelerated by 2 orders of magnitude using 2D protocols with optimized half-pulse excitation. Magn Reson Med 77:945-950, 2017. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Agua Corporal/metabolismo , Hueso Cortical/anatomía & histología , Hueso Cortical/metabolismo , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Procesamiento de Señales Asistido por Computador , Algoritmos , Agua Corporal/química , Hueso Cortical/química , Humanos , Aumento de la Imagen/métodos , Porosidad , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
19.
NMR Biomed ; 29(4): 400-10, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27077155

RESUMEN

Mapping axon diameter is of interest for the potential diagnosis and monitoring of various neuronal pathologies. Advanced diffusion-weighted MRI methods have been developed to measure mean axon diameters non-invasively, but suffer major drawbacks that prevent their direct translation into clinical practice, such as complex non-linear data fitting and, more importantly, long scanning times that are usually not tolerable for most human subjects. In the current study, temporal diffusion spectroscopy using oscillating diffusion gradients was used to measure mean axon diameters with high sensitivity to small axons in the central nervous system. Axon diameters have been found to be correlated with a novel metric, DDR⊥ (the rate of dispersion of the perpendicular diffusion coefficient with gradient frequency), which is a model-free quantity that does not require complex data analyses and can be obtained from two diffusion coefficient measurements in clinically relevant times with conventional MRI machines. A comprehensive investigation including computer simulations and animal experiments ex vivo showed that measurements of DDR⊥ agree closely with histological data. In humans in vivo, DDR⊥ was also found to correlate well with reported mean axon diameters in human corpus callosum, and the total scan time was only about 8 min. In conclusion, DDR⊥ may have potential to serve as a fast, simple and model-free approach to map the mean axon diameter of white matter in clinics for assessing axon diameter changes.


Asunto(s)
Axones/patología , Imagen de Difusión por Resonancia Magnética/métodos , Adulto , Animales , Femenino , Humanos , Masculino , Ratas Sprague-Dawley , Factores de Tiempo
20.
Magn Reson Med ; 75(3): 1341-5, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25920491

RESUMEN

PURPOSE: Several studies have shown strong correlations between myelin content and T1 within the brain, and have even suggested that T1 can be used to estimate myelin content. However, other micro-anatomical features such as compartment size are known to affect longitudinal relaxation rates, similar to compartment size effects in porous media. METHODS: T1 measurements were compared with measured or otherwise published axon size measurements in white matter tracts of the rat spinal cord, rat brain, and human brain. RESULTS: In both ex vivo and in vivo studies, correlations were present between the relaxation rate 1/T1 and axon size across regions of rat spinal cord with nearly equal myelin content. CONCLUSION: While myelination is likely the dominant determinant of T1 in white matter, variations in white matter microstructure, independent of myelin volume fraction, may also be reflected in T1 differences between regions or subjects.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Médula Espinal/diagnóstico por imagen , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Animales , Axones/ultraestructura , Femenino , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Sustancia Blanca/citología , Sustancia Blanca/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...