Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 35(13): 109293, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34192535

RESUMEN

While the immediate and transitory response of breast cancer cells to pathological stiffness in their native microenvironment has been well explored, it remains unclear how stiffness-induced phenotypes are maintained over time after cancer cell dissemination in vivo. Here, we show that fibrotic-like matrix stiffness promotes distinct metastatic phenotypes in cancer cells, which are preserved after transition to softer microenvironments, such as bone marrow. Using differential gene expression analysis of stiffness-responsive breast cancer cells, we establish a multigenic score of mechanical conditioning (MeCo) and find that it is associated with bone metastasis in patients with breast cancer. The maintenance of mechanical conditioning is regulated by RUNX2, an osteogenic transcription factor, established driver of bone metastasis, and mitotic bookmarker that preserves chromatin accessibility at target gene loci. Using genetic and functional approaches, we demonstrate that mechanical conditioning maintenance can be simulated, repressed, or extended, with corresponding changes in bone metastatic potential.


Asunto(s)
Neoplasias Óseas/secundario , Neoplasias de la Mama/patología , Neoplasias de la Mama/fisiopatología , Fenómenos Biomecánicos , Médula Ósea/patología , Línea Celular Tumoral , Núcleo Celular/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Matriz Extracelular/metabolismo , Femenino , Humanos , Mecanotransducción Celular , Invasividad Neoplásica , Microambiente Tumoral
2.
Cell Div ; 13: 6, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30202427

RESUMEN

BACKGROUND: Live-cell fluorescence microscopy (LCFM) is a powerful tool used to investigate cellular dynamics in real time. However, the capacity to simultaneously measure DNA content in cells being tracked over time remains challenged by dye-associated toxicities. The ability to measure DNA content in single cells by means of LCFM would allow cellular stage and ploidy to be coupled with a variety of imaging directed analyses. Here we describe a widely applicable nontoxic approach for measuring DNA content in live cells by fluorescence microscopy. This method relies on introducing a live-cell membrane-permeant DNA fluorophore, such as Hoechst 33342, into the culture medium of cells at the end of any live-cell imaging experiment and measuring each cell's integrated nuclear fluorescence to quantify DNA content. Importantly, our method overcomes the toxicity and induction of DNA damage typically caused by live-cell dyes through strategic timing of adding the dye to the cultures; allowing unperturbed cells to be imaged for any interval of time before quantifying their DNA content. We assess the performance of our method empirically and discuss adaptations that can be implemented using this technique. RESULTS: Presented in conjunction with cells expressing a histone 2B-GFP fusion protein (H2B-GFP), we demonstrated how this method enabled chromosomal segregation errors to be tracked in cells as they progressed through cellular division that were later identified as either diploid or polyploid. We also describe and provide an automated Matlab-derived algorithm that measures the integrated nuclear fluorescence in each cell and subsequently plots these measurements into a cell cycle histogram for each frame imaged. The algorithm's accurate assessment of DNA content was validated by parallel flow cytometric studies. CONCLUSIONS: This method allows the examination of single-cell dynamics to be correlated with cellular stage and ploidy in a high-throughput fashion. The approach is suitable for any standard epifluorescence microscope equipped with a stable illumination source and either a stage-top incubator or an enclosed live-cell incubation chamber. Collectively, we anticipate that this method will allow high-resolution microscopic analysis of cellular processes involving cell cycle progression, such as checkpoint activation, DNA replication, and cellular division.

3.
Biophys J ; 112(4): 746-754, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-28256234

RESUMEN

Borrelia burgdorferi, the spirochete that causes Lyme disease, is a tick-transmitted pathogen that requires motility to invade and colonize mammalian and tick hosts. These bacteria use a unique undulating flat-wave shape to penetrate and propel themselves through host tissues. Previous mathematical modeling has suggested that the morphology and motility of these spirochetes depends crucially on the flagellar/cell wall stiffness ratio. Here, we test this prediction using the antibiotic vancomycin to weaken the cell wall. We found that low to moderate doses of vancomycin (≤2.0 µg/mL for 24 h) produced small alterations in cell shape and that as the dose was increased, cell speed decreased. Vancomycin concentrations >1.0 µg/mL also inhibited cell growth and led to bleb formation on a fraction of the cells. To quantitatively assess how vancomycin affects cell stiffness, we used optical traps to bend unflagellated mutants of B. burgdorferi. We found that in the presence of vancomycin, cell wall stiffness gradually decreased over time, with a 40% reduction in the bending stiffness after 36 h. Under the same conditions, the swimming speed of wild-type B. burgdorferi slowed by ∼15%, with only marginal changes to cell morphology. Interestingly, our biophysical model for the swimming dynamics of B. burgdorferi suggested that cell speed should increase with decreasing cell stiffness. We show that this discrepancy can be resolved if the periplasmic volume decreases as the cell wall becomes softer. These results provide a testable hypothesis for how alterations of cell wall stiffness affect periplasmic volume regulation. Furthermore, since motility is crucial to the virulence of B. burgdorferi, the results suggest that sublethal doses of antibiotics could negatively impact spirochete survival by impeding their swim speed, thereby enabling their capture and elimination by phagocytes.


Asunto(s)
Antibacterianos/farmacología , Borrelia burgdorferi/efectos de los fármacos , Pared Celular/efectos de los fármacos , Enfermedad de Lyme/microbiología , Fenómenos Mecánicos/efectos de los fármacos , Movimiento/efectos de los fármacos , Vancomicina/farmacología , Fenómenos Biomecánicos/efectos de los fármacos , Borrelia burgdorferi/citología , Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/fisiología
4.
Genes Cancer ; 8(11-12): 771-783, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29321819

RESUMEN

Several studies have demonstrated that specific 14-3-3 isoforms are frequently elevated in cancer and that these proteins play a role in human tumorigenesis. 14-3-3γ, an isoform recently demonstrated to function as an oncoprotein, is overexpressed in a variety of human cancers; however, its role in promoting tumorigenesis remains unclear. We previously reported that overexpression of 14-3-3γ caused the appearance of polyploid cells, a phenotype demonstrated to have profound tumor promoting properties. Here we examined the mechanism driving 14-3-3γ-induced polyploidization and the effect this has on genomic stability. Using FUCCI probes we showed that these polyploid cells appeared when diploid cells failed to enter mitosis and subsequently underwent endoreduplication. We then demonstrated that 14-3-3γ-induced polyploid cells experience significant chromosomal segregation errors during mitosis and observed that some of these cells stably propagate as tetraploids when isolated cells were expanded into stable cultures. These data lead us to conclude that overexpression of the 14-3-3γ promotes endoreduplication. We further investigated the role of 14-3-3γ in human NSCLC samples and found that its expression is significantly elevated in polyploid tumors. Collectively, these results suggests that 14-3-3γ may promote tumorigenesis through the production of a genetically unstable polyploid intermediate.

5.
Proc Natl Acad Sci U S A ; 109(8): 3059-64, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22315410

RESUMEN

The Lyme disease spirochete Borrelia burgdorferi exists in nature in an enzootic cycle that involves the arthropod vector Ixodes scapularis and mammalian reservoirs. To disseminate within and between these hosts, spirochetes must migrate through complex, polymeric environments such as the basement membrane of the tick midgut and the dermis of the mammal. To date, most research on the motility of B. burgdorferi has been done in media that do not resemble the tissue milieus that B. burgdorferi encounter in vivo. Here we show that the motility of Borrelia in gelatin matrices in vitro resembles the pathogen's movements in the chronically infected mouse dermis imaged by intravital microscopy. More specifically, B. burgdorferi motility in mouse dermis and gelatin is heterogeneous, with the bacteria transitioning between at least three different motility states that depend on transient adhesions to the matrix. We also show that B. burgdorferi is able to penetrate matrices with pore sizes much smaller than the diameter of the bacterium. We find a complex relationship between the swimming behavior of B. burgdorferi and the rheological properties of the gelatin, which cannot be accounted for by recent theoretical predictions for microorganism swimming in gels. Our results also emphasize the importance of considering borrelial adhesion as a dynamic rather than a static process.


Asunto(s)
Borrelia burgdorferi/efectos de los fármacos , Borrelia burgdorferi/fisiología , Dermis/efectos de los fármacos , Dermis/microbiología , Gelatina/farmacología , Enfermedad de Lyme/microbiología , Animales , Adhesión Bacteriana/efectos de los fármacos , Cinética , Metilcelulosa/farmacología , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Movimiento/efectos de los fármacos , Reología/efectos de los fármacos , Soluciones , Imagen de Lapso de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...