Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 11, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238869

RESUMEN

Multiple system atrophy (MSA) is a rare and fatal synucleinopathy characterized by insoluble alpha-synuclein (α-syn) cytoplasmic inclusions located within oligodendroglia. Neuroinflammation, demyelination, and neurodegeneration are correlated with areas of glia cytoplasmic inclusions (GCI) pathology, however it is not known what specifically drives disease pathogenesis. Recent studies have shown that disease pathologies found in post-mortem tissue from MSA patients can be modeled in rodents via a modified AAV overexpressing α-syn, Olig001-SYN, which has a 95% tropism for oligodendrocytes. In the Olig001-SYN mouse model, CD4+ T cells have been shown to drive neuroinflammation and demyelination, however the mechanism by which this occurs remains unclear. In this study we use genetic and pharmacological approaches in the Olig001-SYN model of MSA to show that the pro-inflammatory cytokine interferon gamma (IFNγ) drives neuroinflammation, demyelination, and neurodegeneration. Furthermore, using an IFNγ reporter mouse, we found that infiltrating CD4+ T cells were the primary producers of IFNγ in response to α-syn overexpression in oligodendrocytes. Results from these studies indicate that IFNγ expression from CD4+ T cells drives α-syn-mediated neuroinflammation, demyelination, and neurodegeneration. These results indicate that targeting IFNγ expression may be a potential disease modifying therapeutic strategy for MSA.


Asunto(s)
Enfermedades Desmielinizantes , Atrofia de Múltiples Sistemas , Sinucleinopatías , Animales , Humanos , Ratones , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Interferón gamma/metabolismo , Atrofia de Múltiples Sistemas/patología , Enfermedades Neuroinflamatorias , Oligodendroglía/patología , Sinucleinopatías/patología
2.
Brain ; 147(2): 444-457, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38006313

RESUMEN

While Parkinson's disease remains clinically defined by cardinal motor symptoms resulting from nigrostriatal degeneration, it is now appreciated that the disease commonly consists of multiple pathologies, but it is unclear where these co-pathologies occur early in disease and whether they are responsible for the nigrostriatal degeneration. For the past number of years, we have been studying a well-characterized cohort of subjects with motor impairment that we have termed mild motor deficits. Motor deficits were determined on a modified and validated Unified Parkinson's Disease Rating Scale III but were insufficient in degree to diagnose Parkinson's disease. However, in our past studies, cases in this cohort had a selection bias, as both a clinical syndrome in between no motor deficits and Parkinson's disease, plus nigral Lewy pathology as defined post-mortem, were required for inclusion. Therefore, in the current study, we only based inclusion on the presence of a clinical phenotype with mild motor impairment insufficient to diagnose Parkinson's disease. Then, we divided this group further based upon whether or not subjects had a synucleinopathy in the nigrostriatal system. Here we demonstrate that loss of nigral dopaminergic neurons, loss of putamenal dopaminergic innervation and loss of the tyrosine hydroxylase-phenotype in the substantia nigra and putamen occur equally in mild motor deficit groups with and without nigral alpha-synuclein aggregates. Indeed, the common feature of these two groups is that both have similar degrees of AT8 positive phosphorylated tau, a pathology not seen in the nigrostriatal system of age-matched controls. These findings were confirmed with early (tau Ser208 phosphorylation) and late (tau Ser396/Ser404 phosphorylation) tau markers. This suggests that the initiation of nigrostriatal dopaminergic neurodegeneration occurs independently of alpha-synuclein aggregation and can be tau mediated.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Sinucleinopatías , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Trastornos Parkinsonianos/patología , Sinucleinopatías/patología , Putamen/metabolismo , Sustancia Negra/metabolismo , Dopamina
3.
Sci Transl Med ; 15(721): eadk3225, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37939158

RESUMEN

Parkinson's disease (PD) is a multisystem disorder with characteristics of a chronic inflammatory disease. To develop effective immunomodulatory interventions to combat PD, we need to think innovatively about the implications of orchestrated central and peripheral innate and adaptive immune responses that occur as the disease begins and progresses.


Asunto(s)
Enfermedad de Parkinson , Humanos , Inmunidad Adaptativa , Inmunomodulación , Inmunidad Innata
5.
Handb Clin Neurol ; 193: 95-106, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36803825

RESUMEN

Neuroinflammation is a core feature of Parkinson disease (PD) and related disorders. Inflammation is detectable early in PD and persists throughout the disease state. Both the innate and the adaptive arms of the immune system are engaged in both human PD as well as in animal models of the disease. The upstream causes of PD are likely multiple and complex, which makes targeting of disease-modifying therapies based on etiological factors difficult. Inflammation is a broadly shared common mechanism and likely makes an important contribution to progression in most patients with manifest symptoms. Development of treatments targeting neuroinflammation in PD will require an understanding of the specific immune mechanisms which are active, their relative effects on both injury and neurorestoration, as well as the role of key variables likely to modulate the immune response: age, sex, the nature of the proteinopathies present, and the presence of copathologies. Studies characterizing the specific state of immune response in individuals and groups of people affected by PD will be essential to the development of targeted disease-modifying immunotherapies.


Asunto(s)
Enfermedad de Parkinson , Animales , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/patología , Enfermedades Neuroinflamatorias , Inflamación , Sistema Inmunológico , Modelos Animales
7.
Mol Neurodegener ; 17(1): 7, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012605

RESUMEN

BACKGROUND: Leucine rich repeat kinase 2 (LRRK2) and SNCA are genetically linked to late-onset Parkinson's disease (PD). Aggregated α-synuclein pathologically defines PD. Recent studies identified elevated LRRK2 expression in pro-inflammatory CD16+ monocytes in idiopathic PD, as well as increased phosphorylation of the LRRK2 kinase substrate Rab10 in monocytes in some LRRK2 mutation carriers. Brain-engrafting pro-inflammatory monocytes have been implicated in dopaminergic neurodegeneration in PD models. Here we examine how α-synuclein and LRRK2 interact in monocytes and subsequent neuroinflammatory responses. METHODS: Human and mouse monocytes were differentiated to distinct transcriptional states resembling macrophages, dendritic cells, or microglia, and exposed to well-characterized human or mouse α-synuclein fibrils. LRRK2 expression and LRRK2-dependent Rab10 phosphorylation were measured with monoclonal antibodies, and myeloid cell responses to α-synuclein fibrils in R1441C-Lrrk2 knock-in mice or G2019S-Lrrk2 BAC mice were evaluated by flow cytometry. Chemotaxis assays were performed with monocyte-derived macrophages stimulated with α-synuclein fibrils and microglia in Boyden chambers. RESULTS: α-synuclein fibrils robustly stimulate LRRK2 and Rab10 phosphorylation in human and mouse macrophages and dendritic-like cells. In these cells, α-synuclein fibrils stimulate LRRK2 through JAK-STAT activation and intrinsic LRRK2 kinase activity in a feed-forward pathway that upregulates phosphorylated Rab10. In contrast, LRRK2 expression and Rab10 phosphorylation are both suppressed in microglia-like cells that are otherwise highly responsive to α-synuclein fibrils. Corroborating these results, LRRK2 expression in the brain parenchyma occurs in pro-inflammatory monocytes infiltrating from the periphery, distinct from brain-resident microglia. Mice expressing pathogenic LRRK2 mutations G2019S or R1441C have increased numbers of infiltrating pro-inflammatory monocytes in acute response to α-synuclein fibrils. In primary cultured macrophages, LRRK2 kinase inhibition dampens α-synuclein fibril and microglia-stimulated chemotaxis. CONCLUSIONS: Pathologic α-synuclein activates LRRK2 expression and kinase activity in monocytes and induces their recruitment to the brain. These results predict that LRRK2 kinase inhibition may attenuate damaging pro-inflammatory monocyte responses in the brain.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Encéfalo/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Ratones , Monocitos/metabolismo , Mutación , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
8.
Glia ; 70(1): 155-172, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34533864

RESUMEN

Glial activation with the production of pro-inflammatory mediators is a major driver of disease progression in neurological processes ranging from acute traumatic injury to chronic neurodegenerative diseases such as amyotrophic lateral sclerosis and Alzheimer's disease. Posttranscriptional regulation is a major gateway for glial activation as many mRNAs encoding pro-inflammatory mediators contain adenine- and uridine-rich elements (ARE) in the 3' untranslated region which govern their expression. We have previously shown that HuR, an RNA regulator that binds to AREs, plays a major positive role in regulating inflammatory cytokine production in glia. HuR is predominantly nuclear in localization but translocates to the cytoplasm to exert a positive regulatory effect on RNA stability and translational efficiency. Homodimerization of HuR is necessary for translocation and we have developed a small molecule inhibitor, SRI-42127, that blocks this process. Here we show that SRI-42127 suppressed HuR translocation in LPS-activated glia in vitro and in vivo and significantly attenuated the production of pro-inflammatory mediators including IL1ß, IL-6, TNF-α, iNOS, CXCL1, and CCL2. Cytokines typically associated with anti-inflammatory effects including TGF-ß1, IL-10, YM1, and Arg1 were either unaffected or minimally affected. SRI-42127 suppressed microglial activation in vivo and attenuated the recruitment/chemotaxis of neutrophils and monocytes. RNA kinetic studies and luciferase studies indicated that SRI-42127 has inhibitory effects both on mRNA stability and gene promoter activation. In summary, our findings underscore HuR's critical role in promoting glial activation and the potential for SRI-42127 and other HuR inhibitors for treating neurological diseases driven by this activation.


Asunto(s)
Proteína 1 Similar a ELAV , Lipopolisacáridos , Regiones no Traducidas 3' , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Humanos , Cinética , Lipopolisacáridos/toxicidad , Enfermedades Neuroinflamatorias
9.
NPJ Parkinsons Dis ; 7(1): 36, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33850148

RESUMEN

Increasing evidence supports the role of brain and systemic inflammation in the etiology of Parkinson disease (PD). We used gene expression profiling to examine the activation state of peripheral blood monocytes in 18 patients with early, untreated PD and 16 healthy control (HC) subjects. Monocytes were isolated by negative selection, and gene expression studied by RNA-seq and gene set enrichment analysis. A computational model that incorporated case/control status, sex, and the interaction between case/control status and sex was utilized. We found that there was a striking effect of sex on monocyte gene expression. There was inflammatory activation of monocytes in females with PD, with enrichment of gene sets associated with interferon gamma stimulation. In males, the activation patterns were more heterogeneous. These data point to the importance of systemic monocyte activation in PD, and the importance of studies which examine the differential effects of sex on pathophysiology of the disease.

10.
Brain ; 144(7): 2047-2059, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-33704423

RESUMEN

α-Synuclein, a key pathological component of Parkinson's disease, has been implicated in the activation of the innate and adaptive immune system. This immune activation includes microgliosis, increased inflammatory cytokines, and the infiltration of T cells into the CNS. More recently, peripherally circulating CD4 and CD8 T cells derived from individuals with Parkinson's disease have been shown to produce Th1/Th2 cytokines in response to α-synuclein, suggesting there may be a chronic memory T cell response present in Parkinson's disease. To understand the potential effects of these α-syn associated T cell responses we used an α-synuclein overexpression mouse model, T cell-deficient mice, and a combination of immunohistochemistry and flow cytometry. In this study, we found that α-synuclein overexpression in the midbrain of mice leads to the upregulation of the major histocompatibility complex II (MHCII) protein on CNS myeloid cells as well as the infiltration of IFNγ producing CD4 and CD8 T cells into the CNS. Interestingly, genetic deletion of TCRß or CD4, as well as the use of the immunosuppressive drug fingolimod, were able to reduce the CNS myeloid MHCII response to α-synuclein. Furthermore, we observed that CD4-deficient mice were protected from the dopaminergic cell loss observed due to α-syn overexpression. These results suggest that T cell responses associated with α-synuclein pathology may be damaging to key areas of the CNS in Parkinson's disease and that targeting these T cell responses could be an avenue for disease modifying treatments.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Encefalitis/inmunología , Encefalitis/patología , Degeneración Nerviosa/inmunología , Enfermedad de Parkinson/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Degeneración Nerviosa/patología , Enfermedad de Parkinson/patología , alfa-Sinucleína/inmunología
11.
Acta Neuropathol ; 141(4): 527-545, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33555429

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder where alpha-synuclein plays a central role in the death and dysfunction of neurons, both, in central, as well as in the peripheral nervous system. Besides the neuronal events observed in patients, PD also includes a significant immune component. It is suggested that the PD-associated immune response will have consequences on neuronal health, thus opening immunomodulation as a potential therapeutic strategy in PD. The immune changes during the disease occur in the brain, involving microglia, but also in the periphery with changes in cells of the innate immune system, particularly monocytes, as well as those of adaptive immunity, such as T-cells. This realization arises from multiple patient studies, but also from data in animal models of the disease, providing strong evidence for innate and adaptive immune system crosstalk in the central nervous system and periphery in PD. Here we review the data showing that alpha-synuclein plays a crucial role in the activation of the innate and adaptive immune system. We will also describe the studies suggesting that inflammation in PD includes early changes in innate and adaptive immune cells that develop dynamically through time during disease, contributing to neuronal degeneration and symptomatology in patients. This novel finding has contributed to the definition of PD as a multisystem disease that should be approached in a more integratory manner rather than a brain-focused classical approach.


Asunto(s)
Inmunidad Adaptativa/inmunología , Encéfalo/inmunología , Inmunidad Innata/inmunología , Neuroinmunomodulación/fisiología , Enfermedad de Parkinson/inmunología , Animales , Encéfalo/patología , Humanos , Enfermedad de Parkinson/patología
12.
Mov Disord ; 36(1): 37-49, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33009855

RESUMEN

Neuroinflammation has long been associated with central nervous system pathology in α-synucleinopathy disorders including Parkinson's disease and multiple system atrophy. In the past decade, research-focused efforts in preclinical and experimental models have rallied around this idea, and considerable effort has been made to delineate critical neuroinflammatory processes. In this article, we discuss challenges in preclinical research, notably the use of animal models to recapitulate and dissect disease phenotypes as well as the need for more sensitive, reliable radiotracers to detect on-target efficacy of immunomodulatory treatments in both human Parkinson's disease as well as preclinical models. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Atrofia de Múltiples Sistemas , Sinucleinopatías , Animales , Modelos Animales de Enfermedad , Humanos , Inflamación , Modelos Teóricos , Atrofia de Múltiples Sistemas/diagnóstico por imagen , alfa-Sinucleína
13.
NPJ Parkinsons Dis ; 6: 18, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32885037

RESUMEN

This Viewpoint discusses insights from basic science and clinical perspectives on coronavirus disease 2019 (COVID-19)/severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection in the brain, with a particular focus on Parkinson's disease. Major points include that neuropathology studies have not answered the central issue of whether the virus enters central nervous system neurons, astrocytes or microglia, and the brain vascular cell types that express virus have not yet been identified. Currently, there is no clear evidence for human neuronal or astrocyte expression of angiotensin-converting enzyme 2 (ACE2), the major receptor for viral entry, but ACE2 expression may be activated by inflammation, and a comparison of healthy and infected brains is important. In contrast to the 1918 influenza pandemic and avian flu, reports of encephalopathy in COVID-19 have been slow to emerge, and there are so far no documented reports of parkinsonism apart from a single case report. We recommend consensus guidelines for the clinical treatment of Parkinson's patients with COVID-19. While a role for the virus in causing or exacerbating Parkinson's disease appears unlikely at this time, aggravation of specific motor and non-motor symptoms has been reported, and it will be important to monitor subjects after recovery, particularly for those with persisting hyposmia.

14.
Prog Brain Res ; 252: 169-216, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32247364

RESUMEN

Parkinson's disease (PD) has classically been defined as a movement disorder, in which motor symptoms are explained by the aggregation of alpha-synuclein (α-syn) and subsequent death of dopaminergic neurons of the substantia nigra pars compacta (SNpc). More recently, the multisystem effects of the disease have been investigated, with the immune system being implicated in a number of these processes in the brain, the blood, and the gut. In this review, we highlight the dysfunctional immune system found in both human PD and animal models of the disease, and discuss how genetic risk factors and risk modifiers are associated with pro-inflammatory immune responses. Finally, we emphasize evidence that the immune response drives the pathogenesis and progression of PD, and discuss key questions that remain to be investigated in order to identify immunomodulatory therapies in PD.


Asunto(s)
Inmunidad Adaptativa/inmunología , Inmunidad Innata/inmunología , Inflamación/inmunología , Enfermedad de Parkinson/inmunología , Animales , Humanos
15.
Acta Neuropathol ; 139(5): 855-874, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31993745

RESUMEN

Multiple system atrophy (MSA) is a progressive neurodegenerative disorder characterized by abnormal accumulation of alpha-synuclein (α-syn) in oligodendrocytes accompanied by inflammation, demyelination, and subsequent synapse and neuronal loss. Little is known about the mechanisms of neurodegeneration in MSA. However, recent work has highlighted the important role of the immune system to the pathophysiology of other synuclein-related diseases such as Parkinson's disease. In this study, we investigated postmortem brain tissue from MSA patients and control subjects for evidence of immune activation in the brain. We found a significant increase of HLA-DR+ microglia in the putamen and substantia nigra of MSA patient tissue compared to controls, as well as significant increases in CD3+, CD4+, and CD8+ T cells in these same brain regions. To model MSA in vivo, we utilized a viral vector that selectively overexpresses α-syn in oligodendrocytes (Olig001-SYN) with > 95% tropism in the dorsal striatum of mice, resulting in demyelination and neuroinflammation similar to that observed in human MSA. Oligodendrocyte transduction with this vector resulted in a robust inflammatory response, which included increased MHCII expression on central nervous system (CNS) resident microglia, and infiltration of pro-inflammatory monocytes into the CNS. We also observed robust infiltration of CD4 T cells into the CNS and antigen-experienced CD4 T cells in the draining cervical lymph nodes. Importantly, genetic deletion of TCR-ß or CD4 T cells attenuated α-syn-induced inflammation and demyelination in vivo. These results suggest that T cell priming and infiltration into the CNS are key mechanisms of disease pathogenesis in MSA, and therapeutics targeting T cells may be disease modifying.


Asunto(s)
Encéfalo/patología , Microglía/patología , Atrofia de Múltiples Sistemas/patología , Linfocitos T/patología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Microglía/inmunología , Atrofia de Múltiples Sistemas/inmunología , Neuronas/patología , Oligodendroglía/patología , Enfermedad de Parkinson/patología
17.
J Neuroinflammation ; 15(1): 244, 2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-30165873

RESUMEN

BACKGROUND: Parkinson's disease (PD) is characterized by intracellular alpha-synuclein (α-syn) inclusions, progressive death of dopaminergic neurons in the substantia nigra pars compacta (SNpc), and activation of the innate and adaptive immune systems. Disruption of immune signaling between the central nervous system (CNS) and periphery, such as through targeting the chemokine receptor type 2 (CCR2) or the major histocompatibility complex II (MHCII), is neuroprotective in rodent models of PD, suggesting a key role for innate and adaptive immunity in disease progression. The purpose of this study was to investigate whether genetic knockout or RNA silencing of the class II transactivator (CIITA), a transcriptional co-activator required for MHCII induction, is effective in reducing the neuroinflammation and neurodegeneration observed in an α-syn mouse model of PD. METHODS: In vitro, we utilized microglia cultures from WT or CIITA -/- mice treated with α-syn fibrils to investigate inflammatory iNOS expression and antigen processing via immunocytochemistry (ICC). In vivo, an adeno-associated virus (AAV) was used to overexpress α-syn in WT and CIITA -/- mice as a model for PD. Concurrently with AAV-mediated overexpression of α-syn, WT mice received CIITA-targeted shRNAs packaged in lentiviral constructs. Immunohistochemistry and flow cytometry were used to assess inflammation and peripheral cell infiltration at 4 weeks post transduction, and unbiased stereology was used 6 months post transduction to assess neurodegeneration. RESULTS: Using ICC and DQ-ovalbumin, we show that CIITA -/- microglial cultures failed to upregulate iNOS and MHCII expression, and had decreased antigen processing in response to α-syn fibrils when compared to WT microglia. In vivo, global knock-out of CIITA as well as local knockdown using lentiviral shRNAs targeting CIITA attenuated MHCII expression, peripheral immune cell infiltration, and α-syn-induced neurodegeneration. CONCLUSION: Our data provide evidence that CIITA is required for α-syn-induced MHCII induction and subsequent infiltration of peripheral immune cells in an α-syn mouse model of PD. Additionally, we demonstrate that CIITA in the CNS drives neuroinflammation and neurodegeneration. These data provide further support that the disruption or modulation of antigen processing and presentation via CIITA is a promising target for therapeutic development in preclinical animal models of PD.


Asunto(s)
Encefalitis , Regulación Enzimológica de la Expresión Génica/genética , Enfermedades Neurodegenerativas , Proteínas Nucleares/metabolismo , Enfermedad de Parkinson/complicaciones , Transactivadores/metabolismo , alfa-Sinucleína/metabolismo , Animales , Antígenos CD/metabolismo , Modelos Animales de Enfermedad , Encefalitis/etiología , Encefalitis/genética , Encefalitis/terapia , Femenino , Lateralidad Funcional/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Masculino , Mesencéfalo/metabolismo , Mesencéfalo/patología , Ratones , Ratones Endogámicos C57BL , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/terapia , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteínas Nucleares/genética , Enfermedad de Parkinson/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transactivadores/genética , Tirosina 3-Monooxigenasa/metabolismo , alfa-Sinucleína/genética
18.
Exp Neurol ; 300: 179-187, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29155051

RESUMEN

Accumulation of alpha-synuclein (α-syn) in the central nervous system (CNS) is a core feature of Parkinson disease (PD) that leads to activation of the innate immune system, production of inflammatory cytokines and chemokines, and subsequent neurodegeneration. Here, we used heterozygous reporter knock-in mice in which the first exons of the fractalkine receptor (CX3CR1) and of the C-C chemokine receptor type 2 (CCR2) are replaced with fluorescent reporters to study the role of resident microglia (CX3CR1+) and infiltrating peripheral monocytes (CCR2+), respectively, in the CNS. We used an α-syn mouse model induced by viral over-expression of α-syn. We find that in vivo, expression of full-length human α-syn induces robust infiltration of pro-inflammatory CCR2+ peripheral monocytes into the substantia nigra. Genetic deletion of CCR2 prevents α-syn induced monocyte entry, attenuates MHCII expression and blocks the subsequent degeneration of dopaminergic neurons. These results demonstrate that extravasation of pro-inflammatory peripheral monocytes into the CNS plays a key role in neurodegeneration in this model of PD synucleinopathy, and suggest that peripheral monocytes may be a target of neuroprotective therapies for human PD.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de Filamentos Intermediarios/biosíntesis , Monocitos/metabolismo , Degeneración Nerviosa/metabolismo , Enfermedad de Parkinson Secundaria/metabolismo , Animales , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Proteínas de Filamentos Intermediarios/toxicidad , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/patología , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/patología , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/patología
19.
Acta Neuropathol Commun ; 5(1): 85, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29162163

RESUMEN

Genetic variation in a major histocompatibility complex II (MHCII)-encoding gene (HLA-DR) increases risk for Parkinson disease (PD), and the accumulation of MHCII-expressing immune cells in the brain correlates with α-synuclein inclusions. However, the timing of MHCII-cell recruitment with respect to ongoing neurodegeneration, and the types of cells that express MHCII in the PD brain, has been difficult to understand. Recent studies show that the injection of short α-synuclein fibrils into the rat substantia nigra pars compacta (SNpc) induces progressive inclusion formation in SNpc neurons that eventually spread to spiny projection neurons in the striatum. Herein, we find that α-synuclein fibrils rapidly provoke a persistent MHCII response in the brain. In contrast, equivalent amounts of monomeric α-synuclein fail to induce MHCII or persistent microglial activation, consistent with our results in primary microglia. Flow cytometry and immunohistochemical analyses reveal that MHCII-expressing cells are composed of both resident microglia as well as cells from the periphery that include monocytes, macrophages, and lymphocytes. Over time, α-Synuclein fibril exposures in the SNpc causes both axon loss as well as monocyte recruitment in the striatum. While these monocytes in the striatum initially lack MHCII expression, α-synuclein inclusions later form in nearby spiny projection neurons and MHCII expression becomes robust. In summary, in the rat α-synuclein fibril model, peripheral immune cell recruitment occurs prior to neurodegeneration and microglia, monocytes and macrophages all contribute to MHCII expression.


Asunto(s)
Encéfalo/metabolismo , Cuerpos de Inclusión/patología , Leucocitos Mononucleares/metabolismo , Microglía/metabolismo , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Animales , Animales Recién Nacidos , Antígenos CD/metabolismo , Encéfalo/patología , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Antígenos HLA-DR/metabolismo , Leucocitos Mononucleares/patología , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Microglía/patología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Enfermedad de Parkinson/genética , Ratas , Ratas Sprague-Dawley , Tirosina 3-Monooxigenasa/metabolismo , alfa-Sinucleína/genética
20.
J Neurosci ; 36(18): 5144-59, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27147665

RESUMEN

UNLABELLED: Parkinson's Disease (PD) is an age-related, chronic neurodegenerative disorder. At present, there are no disease-modifying therapies to prevent PD progression. Activated microglia and neuroinflammation are associated with the pathogenesis and progression of PD. Accumulation of α-synuclein (α-SYN) in the brain is a core feature of PD and leads to microglial activation, inflammatory cytokine/chemokine production, and ultimately to neurodegeneration. Given the importance of the JAK/STAT pathway in activating microglia and inducing cytokine/chemokine expression, we investigated the therapeutic potential of inhibiting the JAK/STAT pathway using the JAK1/2 inhibitor, AZD1480. In vitro, α-SYN exposure activated the JAK/STAT pathway in microglia and macrophages, and treatment with AZD1480 inhibited α-SYN-induced major histocompatibility complex Class II and inflammatory gene expression in microglia and macrophages by reducing STAT1 and STAT3 activation. For in vivo studies, we used a rat model of PD induced by viral overexpression of α-SYN. AZD1480 treatment inhibited α-SYN-induced neuroinflammation by suppressing microglial activation, macrophage and CD4(+) T-cell infiltration and production of proinflammatory cytokines/chemokines. Numerous genes involved in cell-cell signaling, nervous system development and function, inflammatory diseases/processes, and neurological diseases are enhanced in the substantia nigra of rats with α-SYN overexpression, and inhibited upon treatment with AZD1480. Importantly, inhibition of the JAK/STAT pathway prevented the degeneration of dopaminergic neurons in vivo These results indicate that inhibiting the JAK/STAT pathway can prevent neuroinflammation and neurodegeneration by suppressing activation of innate and adaptive immune responses to α-SYN. Furthermore, this suggests the feasibility of targeting the JAK/STAT pathway as a neuroprotective therapy for neurodegenerative diseases. SIGNIFICANCE STATEMENT: α-SYN plays a central role in the pathophysiology of PD through initiation of neuroinflammatory responses. Using an α-SYN overexpression PD model, we demonstrate a beneficial therapeutic effect of AZD1480, a specific inhibitor of JAK1/2, in suppressing neuroinflammation and neurodegeneration. Our findings document that inhibition of the JAK/STAT pathway influences both innate and adaptive immune responses by suppressing α-SYN-induced microglia and macrophage activation and CD4(+) T-cell recruitment into the CNS, ultimately suppressing neurodegeneration. These findings are the first documentation that suppression of the JAK/STAT pathway disrupts the circuitry of neuroinflammation and neurodegeneration, thus attenuating PD pathogenesis. JAK inhibitors may be a viable therapeutic option for the treatment of PD patients.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Inflamación/prevención & control , Quinasas Janus/antagonistas & inhibidores , Enfermedades Neurodegenerativas/prevención & control , Fármacos Neuroprotectores/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Factores de Transcripción STAT/antagonistas & inhibidores , alfa-Sinucleína/antagonistas & inhibidores , alfa-Sinucleína/toxicidad , Animales , Inflamación/inducido químicamente , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Enfermedad de Parkinson/patología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...