Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comp Immunol Microbiol Infect Dis ; 73: 101490, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33068875

RESUMEN

Brucella melitensis is an intracellular bacteria causing disease in humans as an incidental host. The infection initiates as acute flu-like symptoms and may transform into a chronic cyclic infection. This cyclic infection may be partly due to the bacteria's ability to persist within antigen presenting cells and evade the CD8 + T cell response over long periods of time. This research aims to characterize the immune response of the acute and chronic forms of brucellosis in the murine liver and spleen. We also sought to determine if the exhaustion of the CD8 + T cells was a permanent or temporary change. This was accomplished by using adoptive transfer of acutely infected CD8 + T cells and chronically infected CD8 + T cells into a naïve host followed by re-infection. The histological examination presented supports the concept that exhausted T-cells can regain function through evidence of granulomatous inflammation after virulent challenge in a new host environment.


Asunto(s)
Brucella melitensis , Brucelosis/inmunología , Hígado/inmunología , Bazo/inmunología , Enfermedad Aguda , Animales , Brucelosis/patología , Linfocitos T CD8-positivos/inmunología , Enfermedad Crónica , Modelos Animales de Enfermedad , Femenino , Hígado/patología , Ratones , Ratones Endogámicos BALB C , Microscopía/métodos , Bazo/patología
2.
PLoS Pathog ; 16(10): e1009020, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33108406

RESUMEN

Brucellosis, caused by a number of Brucella species, remains the most prevalent zoonotic disease worldwide. Brucella establish chronic infections within host macrophages despite triggering cytosolic innate immune sensors, including Stimulator of Interferon Genes (STING), which potentially limit infection. In this study, STING was required for control of chronic Brucella infection in vivo. However, early during infection, Brucella down-regulated STING mRNA and protein. Down-regulation occurred post-transcriptionally, required live bacteria, the Brucella type IV secretion system, and was independent of host IRE1-RNase activity. STING suppression occurred in MyD88-/- macrophages and was not induced by Toll-like receptor agonists or purified Brucella lipopolysaccharide (LPS). Rather, Brucella induced a STING-targeting microRNA, miR-24-2, in a type IV secretion system-dependent manner. Furthermore, STING downregulation was inhibited by miR-24 anti-miRs and in Mirn23a locus-deficient macrophages. Failure to suppress STING expression in Mirn23a-/- macrophages correlated with diminished Brucella replication, and was rescued by exogenous miR-24. Mirn23a-/- mice were also more resistant to splenic colonization one week post infection. Anti-miR-24 potently suppressed replication in wild type, but much less in STING-/- macrophages, suggesting most of the impact of miR-24 induction on replication occurred via STING suppression. In summary, Brucella sabotages cytosolic surveillance by miR-24-dependent suppression of STING expression; post-STING activation "damage control" via targeted STING destruction may enable establishment of chronic infection.


Asunto(s)
Brucella/metabolismo , Brucelosis/metabolismo , Proteínas de la Membrana/biosíntesis , MicroARNs/metabolismo , Animales , Brucella/genética , Brucelosis/genética , Femenino , Interacciones Huésped-Patógeno/inmunología , Macrófagos/inmunología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , ARN Mensajero/genética , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo
3.
J Immunol ; 202(9): 2671-2681, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30894428

RESUMEN

Brucella abortus is a facultative intracellular bacterium that causes brucellosis, a prevalent zoonosis that leads to abortion and infertility in cattle, and undulant fever, debilitating arthritis, endocarditis, and meningitis in humans. Signaling pathways triggered by B. abortus involves stimulator of IFN genes (STING), which leads to production of type I IFNs. In this study, we evaluated the pathway linking the unfolded protein response (UPR) and the endoplasmic reticulum-resident transmembrane molecule STING, during B. abortus infection. We demonstrated that B. abortus infection induces the expression of the UPR target gene BiP and XBP1 in murine macrophages through a STING-dependent pathway. Additionally, we also observed that STING activation was dependent on the bacterial second messenger cyclic dimeric GMP. Furthermore, the Brucella-induced UPR is crucial for induction of multiple molecules linked to type I IFN signaling pathway, such as IFN-ß, IFN regulatory factor 1, and guanylate-binding proteins. Furthermore, IFN-ß is also important for the UPR induction during B. abortus infection. Indeed, IFN-ß shows a synergistic effect in inducing the IRE1 axis of the UPR. In addition, priming cells with IFN-ß favors B. abortus survival in macrophages. Moreover, Brucella-induced UPR facilitates bacterial replication in vitro and in vivo. Finally, these results suggest that B. abortus-induced UPR is triggered by bacterial cyclic dimeric GMP, in a STING-dependent manner, and that this response supports bacterial replication. In summary, association of STING and IFN-ß signaling pathways with Brucella-induced UPR unravels a novel link between innate immunity and endoplasmic reticulum stress that is crucial for bacterial infection outcome.


Asunto(s)
Brucella abortus/fisiología , Brucelosis/inmunología , Interacciones Huésped-Patógeno/inmunología , Proteínas de la Membrana/inmunología , Nucleótidos Cíclicos/inmunología , Respuesta de Proteína Desplegada/inmunología , Animales , Brucelosis/genética , Interacciones Huésped-Patógeno/genética , Humanos , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Nucleótidos Cíclicos/genética , Transducción de Señal/genética , Transducción de Señal/inmunología
4.
Infect Immun ; 86(7)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29735518

RESUMEN

Brucella spp. are intracellular pathogenic bacteria remarkable in their ability to escape immune surveillance and therefore inflict a state of chronic disease within the host. To enable further immune response studies, Brucella was engineered to express the well-characterized chicken ovalbumin (OVA). Surprisingly, we found that CD8 T cells bearing T cell receptors (TCR) nominally specific for the OVA peptide SIINFEKL (OT-1) reacted to parental Brucella-infected targets as well as OVA-expressing Brucella variants in cytotoxicity assays. Furthermore, splenocytes from Brucella-immunized mice produced gamma interferon (IFN-γ) and exhibited cytotoxicity in response to SIINFEKL-pulsed target cells.To determine if the SIINFEKL-reactive OT-1 TCR could be cross-reacting to Brucella peptides, we searched the Brucella proteome using an algorithm to generate a list of near-neighbor nonamer peptides that would bind to H2Kb Selecting five Brucella peptide candidates, along with controls, we verified that several of these peptides mimicked SIINFEKL, resulting in T cell activation through the "SIINFEKL-specific" TCR. Activation was dependent on peptide concentration as well as sequence. Our results underscore the complexity and ubiquity of cross-reactivity in T cell recognition. This cross-reactivity may enable microbes such as Brucella to escape immune surveillance by presenting peptides similar to those of the host and may also lead to the activation of autoreactive T cells.


Asunto(s)
Presentación de Antígeno , Brucella/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Activación de Linfocitos , Ovalbúmina/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Animales , Antígenos Bacterianos/inmunología , Reacciones Cruzadas , Evasión Inmune , Ratones , Ratones Endogámicos C57BL , Fragmentos de Péptidos/inmunología
5.
J Immunol ; 200(2): 607-622, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29203515

RESUMEN

Immunity against microbes depends on recognition of pathogen-associated molecular patterns by innate receptors. Signaling pathways triggered by Brucella abortus DNA involves TLR9, AIM2, and stimulator of IFN genes (STING). In this study, we observed by microarray analysis that several type I IFN-associated genes, such as IFN-ß and guanylate-binding proteins (GBPs), are downregulated in STING knockout (KO) macrophages infected with Brucella or transfected with DNA. Additionally, we determined that STING and cyclic GMP-AMP synthase (cGAS) are important to engage the type I IFN pathway, but only STING is required to induce IL-1ß secretion, caspase-1 activation, and GBP2 and GBP3 expression. Furthermore, we determined that STING but not cGAS is critical for host protection against Brucella infection in macrophages and in vivo. This study provides evidence of a cGAS-independent mechanism of STING-mediated protection against an intracellular bacterial infection. Additionally, infected IFN regulatory factor-1 and IFNAR KO macrophages had reduced GBP2 and GBP3 expression and these cells were more permissive to Brucella replication compared with wild-type control macrophages. Because GBPs are critical to target vacuolar bacteria, we determined whether GBP2 and GBPchr3 affect Brucella control in vivo. GBPchr3 but not GBP2 KO mice were more susceptible to bacterial infection, and small interfering RNA treated-macrophages showed reduction in IL-1ß secretion and caspase-1 activation. Finally, we also demonstrated that Brucella DNA colocalizes with AIM2, and AIM2 KO mice are less resistant to B. abortus infection. In conclusion, these findings suggest that the STING-dependent type I IFN pathway is critical for the GBP-mediated release of Brucella DNA into the cytosol and subsequent activation of AIM2.


Asunto(s)
Brucella abortus/inmunología , Brucelosis/inmunología , Brucelosis/metabolismo , Proteínas de Unión al GTP/metabolismo , Inflamasomas/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal , Animales , Brucella abortus/genética , Brucelosis/genética , Brucelosis/microbiología , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Citocinas/metabolismo , Proteínas de Unión al GTP/genética , Expresión Génica , Perfilación de la Expresión Génica , Granuloma/metabolismo , Granuloma/microbiología , Granuloma/patología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Mediadores de Inflamación , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Modelos Biológicos , FN-kappa B/metabolismo
6.
Infect Immun ; 84(12): 3458-3470, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27672085

RESUMEN

Brucella species are facultative intracellular bacteria that cause brucellosis, a chronic debilitating disease significantly impacting global health and prosperity. Much remains to be learned about how Brucella spp. succeed in sabotaging immune host cells and how Brucella spp. respond to environmental challenges. Multiple types of bacteria employ the prokaryotic second messenger cyclic di-GMP (c-di-GMP) to coordinate responses to shifting environments. To determine the role of c-di-GMP in Brucella physiology and in shaping host-Brucella interactions, we utilized c-di-GMP regulatory enzyme deletion mutants. Our results show that a ΔbpdA phosphodiesterase mutant producing excess c-di-GMP displays marked attenuation in vitro and in vivo during later infections. Although c-di-GMP is known to stimulate the innate sensor STING, surprisingly, the ΔbpdA mutant induced a weaker host immune response than did wild-type Brucella or the low-c-di-GMP guanylate cyclase ΔcgsB mutant. Proteomics analysis revealed that c-di-GMP regulates several processes critical for virulence, including cell wall and biofilm formation, nutrient acquisition, and the type IV secretion system. Finally, ΔbpdA mutants exhibited altered morphology and were hypersensitive to nutrient-limiting conditions. In summary, our results indicate a vital role for c-di-GMP in allowing Brucella to successfully navigate stressful and shifting environments to establish intracellular infection.


Asunto(s)
Brucella/patogenicidad , Brucelosis/microbiología , GMP Cíclico/análogos & derivados , Adaptación Fisiológica , Animales , Biopelículas , Brucella/metabolismo , Brucella/ultraestructura , Brucelosis/patología , Células Cultivadas , GMP Cíclico/genética , GMP Cíclico/metabolismo , Aptitud Genética , Macrófagos/metabolismo , Macrófagos/microbiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Sistemas de Secreción Tipo IV , Virulencia
7.
Infect Immun ; 83(12): 4759-71, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26416901

RESUMEN

Brucella melitensis is a well-adapted zoonotic pathogen considered a scourge of mankind since recorded history. In some cases, initial infection leads to chronic and reactivating brucellosis, incurring significant morbidity and economic loss. The mechanism by which B. melitensis subverts adaptive immunological memory is poorly understood. Previous work has shown that Brucella-specific CD8(+) T cells express gamma interferon (IFN-γ) and can transition to long-lived memory cells but are not polyfunctional. In this study, chronic infection of mice with B. melitensis led to CD8(+) T cell exhaustion, manifested by programmed cell death 1 (PD-1) and lymphocyte activation gene 3 (LAG-3) expression and a lack of IFN-γ production. The B. melitensis-specific CD8(+) T cells that produced IFN-γ expressed less IFN-γ per cell than did CD8(+) cells from uninfected mice. Both memory precursor (CD8(+) LFA1(HI) CD127(HI) KLRG1(LO)) and long-lived memory (CD8(+) CD27(HI) CD127(HI) KLRG1(LO)) cells were identified during chronic infection. Interestingly, after adoptive transfer, mice receiving cells from chronically infected animals were able to contain infection more rapidly than recipients of cells from acutely infected or uninfected donors, although the proportions of exhausted CD8(+) T cells increased after adoptive transfer in both challenged and unchallenged recipients. CD8(+) T cells of challenged recipients initially retained the stunted IFN-γ production found prior to transfer, and cells from acutely infected mice were never seen to transition to either memory subset at all time points tested, up to 30 days post-primary infection, suggesting a delay in the generation of memory. Here we have identified defects in Brucella-responsive CD8(+) T cells that allow chronic persistence of infection.


Asunto(s)
Brucella melitensis/inmunología , Brucelosis/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Anergia Clonal , Memoria Inmunológica , Inmunidad Adaptativa , Traslado Adoptivo , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Brucella melitensis/patogenicidad , Brucelosis/genética , Brucelosis/microbiología , Brucelosis/patología , Linfocitos T CD4-Positivos/microbiología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD4-Positivos/trasplante , Linfocitos T CD8-positivos/microbiología , Linfocitos T CD8-positivos/patología , Linfocitos T CD8-positivos/trasplante , Enfermedad Crónica , Femenino , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Interferón gamma/genética , Interferón gamma/inmunología , Recuento de Linfocitos , Ratones , Ratones Endogámicos BALB C , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Transducción de Señal , Proteína del Gen 3 de Activación de Linfocitos
8.
Pathog Dis ; 73(2): 1-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25132657

RESUMEN

Brucella species utilize diverse virulence factors. Previously, Brucella abortus light-sensing histidine kinase was identified as important for cellular infection. Here, we demonstrate that a Brucella melitensis LOV-HK (BM-LOV-HK) mutant strain has strikingly different gene expression than wild type. General stress response genes including the alternative sigma factor rpoE1 and its anti-anti-sigma factor phyR were downregulated, while flagellar, quorum sensing (QS), and type IV secretion system genes were upregulated in the ΔBM-LOV-HK strain vs. wild type. Contextually, expression results agree with other studies of transcriptional regulators involving ΔrpoE1, ΔphyR, ΔvjbR, and ΔblxR (ΔbabR) Brucella strains. Additionally, deletion of BM-LOV-HK decreases virulence in mice. During C57BL/6 mouse infection, the ΔBM-LOV-HK strain had 2 logs less CFUs in the spleen 3 days postinfection, but similar levels 6 days post infection compared to wild type. Infection of IRF-1(-/-) mice more specifically define ΔBM-LOV-HK strain attenuation with fewer bacteria in spleens and significantly increased survival of mutant vs. wild-type infected IRF-1(-/-) mice. Upregulation of flagella, QS, and VirB genes, along with downregulation of rpoE1 and related sigma factor, rpoH2 (BMEI0280) suggest that BM-LOV-HK modulates both QS and general stress response regulatory components to control Brucella gene expression on a global level.


Asunto(s)
Brucella melitensis/enzimología , Brucella melitensis/crecimiento & desarrollo , Brucelosis/patología , Regulación Bacteriana de la Expresión Génica , Proteínas Quinasas/metabolismo , Factores de Virulencia/metabolismo , Animales , Carga Bacteriana , Brucella melitensis/genética , Brucelosis/microbiología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Histidina Quinasa , Ratones Endogámicos C57BL , Proteínas Quinasas/deficiencia , Bazo/microbiología , Análisis de Supervivencia , Virulencia , Factores de Virulencia/deficiencia
9.
Methods Mol Biol ; 1197: 67-85, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25172275

RESUMEN

Despite progress in mouse models of bacterial pathogens, studies are often limited by evaluating infections in an individual organ or tissue or at a given time. Here we present a technique to engineer the pathogen, e.g., Brucella melitensis, with a bioluminescent marker permitting analysis of living bacteria in real time during the infectious process from acute to chronic infection. Using this bioluminescent approach, tissue preference, differences between virulent and mutant bacteria, as well as the response of the bacteria to host metabolites can provide extraordinary data enhancing our understanding of host-pathogen interactions.


Asunto(s)
Brucella melitensis/fisiología , Diagnóstico por Imagen , Interacciones Huésped-Patógeno , Animales , Brucelosis/patología , Modelos Animales de Enfermedad , Ratones
10.
PLoS Pathog ; 9(12): e1003785, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24339776

RESUMEN

Brucella melitensis is a facultative intracellular bacterium that causes brucellosis, the most prevalent zoonosis worldwide. The Brucella intracellular replicative niche in macrophages and dendritic cells thwarts immune surveillance and complicates both therapy and vaccine development. Currently, host-pathogen interactions supporting Brucella replication are poorly understood. Brucella fuses with the endoplasmic reticulum (ER) to replicate, resulting in dramatic restructuring of the ER. This ER disruption raises the possibility that Brucella provokes an ER stress response called the Unfolded Protein Response (UPR). In this study, B. melitensis infection up regulated expression of the UPR target genes BiP, CHOP, and ERdj4, and induced XBP1 mRNA splicing in murine macrophages. These data implicate activation of all 3 major signaling pathways of the UPR. Consistent with previous reports, XBP1 mRNA splicing was largely MyD88-dependent. However, up regulation of CHOP, and ERdj4 was completely MyD88 independent. Heat killed Brucella stimulated significantly less BiP, CHOP, and ERdj4 expression, but induced XBP1 splicing. Although a Brucella VirB mutant showed relatively intact UPR induction, a TcpB mutant had significantly compromised BiP, CHOP and ERdj4 expression. Purified TcpB, a protein recently identified to modulate microtubules in a manner similar to paclitaxel, also induced UPR target gene expression and resulted in dramatic restructuring of the ER. In contrast, infection with the TcpB mutant resulted in much less ER structural disruption. Finally, tauroursodeoxycholic acid, a pharmacologic chaperone that ameliorates the UPR, significantly impaired Brucella replication in macrophages. Together, these results suggest Brucella induces a UPR, via TcpB and potentially other factors, that enables its intracellular replication. Thus, the UPR may provide a novel therapeutic target for the treatment of brucellosis. These results also have implications for other intracellular bacteria that rely on host physiologic stress responses for replication.


Asunto(s)
Proteínas Bacterianas/fisiología , Brucella melitensis/fisiología , Macrófagos/metabolismo , Macrófagos/microbiología , Respuesta de Proteína Desplegada , Factores de Virulencia/fisiología , Animales , Brucelosis/metabolismo , Brucelosis/microbiología , Células Cultivadas , Perros , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Viabilidad Microbiana
11.
Microbes Infect ; 15(6-7): 440-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23421980

RESUMEN

Erythritol is a four-carbon sugar preferentially utilized by Brucella spp. The presence of erythritol in the placentas of goats, cows, and pigs has been used to explain the localization of Brucella to these sites and the subsequent accumulation of large amounts of bacteria, eventually leading to abortion. Here we show that Brucella melitensis will also localize to an artificial site of erythritol within a mouse, providing a potential model system to study the pathogenesis of Brucella abortion. Immunohistological staining of the sites of erythritol within infected mice indicated a higher than expected proportion of extracellular bacteria. Ensuing experiments suggested intracellular B. melitensis was unable to replicate within macrophages in the presence of erythritol and that erythritol was able to reach the site of intracellular bacteria. The intracellular inhibition of growth was found to encourage the bacteria to replicate extracellularly rather than intracellularly, a particularly interesting development in Brucella pathogenesis. To determine the effect of erythritol on expression of B. melitensis genes, bacteria grown either with or without erythritol were analyzed by microarray. Two major virulence pathways were up-regulated in response to exposure to erythritol (the type IV secretion system VirB and flagellar proteins), suggesting a role for erythritol in virulence.


Asunto(s)
Brucella melitensis/metabolismo , Brucella melitensis/patogenicidad , Brucelosis/microbiología , Brucelosis/patología , Eritritol/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Factores de Virulencia/biosíntesis , Animales , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Macrófagos/microbiología , Ratones , Análisis por Micromatrices
12.
PLoS One ; 7(4): e34925, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22558103

RESUMEN

Brucellosis is a common zoonotic disease that remains endemic in many parts of the world. Dissecting the host immune response during this disease provides insight as to why brucellosis is often difficult to resolve. We used a Brucella epitope specific in vivo killing assay to investigate the ability of CD8+ T cells to kill targets treated with purified pathogenic protein. Importantly, we found the pathogenic protein TcpB to be a novel effector of adaptive immune evasion by inhibiting CD8+ T cell killing of Brucella epitope specific target cells in mice. Further, BALB/c mice show active Brucella melitensis infection beyond one year, many with previously unreported focal infection of the urogenital area. A fraction of CD8+ T cells show a CD8+ Tmem phenotype of LFA-1hi, CD127hi, KLRG-1lo during the course of chronic brucellosis, while the CD8+ T cell pool as a whole had a very weak polyfunctional cytokine response with diminished co-expression of IFN-γ with TNFα and/or IL-2, a hallmark of exhaustion. When investigating the expression of these 3 cytokines individually, we observed significant IFN-γ expression at 90 and 180 days post-infection. TNFα expression did not significantly exceed or fall below background levels at any time. IL-2 expression did not significantly exceeded background, but, interestingly, did fall significantly below that of uninfected mice at 180 days post-infection. Brucella melitensis evades and blunts adaptive immunity during acute infection and our findings provide potential mechanisms for the deficit observed in responding CD8+ T cells during chronic brucellosis.


Asunto(s)
Inmunidad Adaptativa/inmunología , Brucelosis/inmunología , Brucelosis/fisiopatología , Proteínas Fimbrias/inmunología , Evasión Inmune/inmunología , Linfocitos T Citotóxicos/inmunología , Análisis de Varianza , Animales , Citocinas/metabolismo , Femenino , Citometría de Flujo , Inmunofenotipificación , Interferón gamma/metabolismo , Interleucina-2/metabolismo , Ratones , Ratones Endogámicos BALB C , Linfocitos T Citotóxicos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
13.
J Bacteriol ; 193(20): 5683-91, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21856843

RESUMEN

Brucella melitensis encounters a variety of conditions and stimuli during its life cycle--including environmental growth, intracellular infection, and extracellular dissemination--which necessitates flexibility of bacterial signaling to promote virulence. Cyclic-di-GMP is a bacterial secondary signaling molecule that plays an important role in adaptation to changing environments and altering virulence in a number of bacteria. To investigate the role of cyclic-di-GMP in B. melitensis, all 11 predicted cyclic-di-GMP-metabolizing proteins were separately deleted and the effect on virulence was determined. Three of these cyclic-di-GMP-metabolizing proteins were found to alter virulence. Deletion of the bpdA and bpdB genes resulted in attenuation of virulence of the bacterium, while deletion of the cgsB gene produced a hypervirulent strain. In a Vibrio reporter system to monitor apparent alteration in levels of cyclic-di-GMP, both BpdA and BpdB displayed a phenotype consistent with cyclic-di-GMP-specific phosphodiesterases, while CgsB displayed a cyclic-di-GMP synthase phenotype. Further analysis found that deletion of bpdA resulted in a dramatic decrease in flagellar promoter activities, and a flagellar mutant showed similar phenotypes to the bpdA and bpdB mutant strains in mouse models of infection. These data indicate a potential role for regulation of flagella in Brucella melitensis via cyclic-di-GMP.


Asunto(s)
3',5'-GMP Cíclico Fosfodiesterasas/metabolismo , Proteínas Bacterianas/metabolismo , Brucella melitensis/enzimología , Flagelos/genética , Regulación Bacteriana de la Expresión Génica , 3',5'-GMP Cíclico Fosfodiesterasas/genética , Animales , Proteínas Bacterianas/genética , Brucella melitensis/genética , Brucella melitensis/metabolismo , Brucella melitensis/patogenicidad , Brucelosis/microbiología , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Flagelos/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Regiones Promotoras Genéticas , Virulencia
14.
Biochem J ; 439(1): 79-83, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21692747

RESUMEN

TIR (Toll/interleukin-1 receptor) domain-containing proteins play a crucial role in innate immunity in eukaryotes. Brucella is a highly infectious intracellular bacterium that encodes a TIR domain protein (TcpB) to subvert host innate immune responses to establish a beneficial niche for pathogenesis. TcpB inhibits NF-κB (nuclear factor κB) activation and pro-inflammatory cytokine secretions mediated by TLR (Toll-like receptor) 2 and TLR4. In the present study, we have demonstrated that TcpB modulates microtubule dynamics by acting as a stabilization factor. TcpB increased the rate of nucleation as well as the polymerization phases of microtubule formation in a similar manner to paclitaxel. TcpB could efficiently inhibit nocodazole- or cold-induced microtubule disassembly. Microtubule stabilization by TcpB is attributed to the BB-loop region of the TIR domain, and a point mutation affected the microtubule stabilization as well as the TLR-suppression properties of TcpB.


Asunto(s)
Proteínas Bacterianas/metabolismo , Brucella melitensis/metabolismo , Microtúbulos/metabolismo , Receptores de Interleucina-1/metabolismo , Proteínas Bacterianas/genética , Brucella melitensis/genética , Microtúbulos/efectos de los fármacos , Nocodazol/farmacología , Estructura Terciaria de Proteína , Receptores de Interleucina-1/genética , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
15.
J Vis Exp ; (45)2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-21085108

RESUMEN

Carboxyfluorescein diacetate succinimidyl ester (CFSE) can be used to easily and quickly label a cell population of interest for in vivo investigation. This labeling has classically been used to study proliferation and migration. In the method presented here, we have shortened the timeline after adoptive transfer to look at survival and killing of epitope specific CFSE labeled target cells. The level of specific killing of a CD8 + T cell clone can indicate the quality of the response, as their quantity may be misleading. Specific CD8+ T cells can become functionally exhausted over time with a decline in cytokine production and killing. Also, certain CD8 + T cell clones may not kill as well as others with differing TCR specificities. For effective Cell Mediated Immunity (CMI), antigens must be identified that produce not only adequate numbers of responding T cells, but also functionally robust responding T cells. Here we assess the percent cell specific killing of two peptide specific T cell clones in BALB/c mice.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Fluoresceínas/química , Colorantes Fluorescentes/química , Succinimidas/química , Traslado Adoptivo , Animales , Linfocitos T CD8-positivos/trasplante , Epítopos , Epítopos de Linfocito T/análisis , Citometría de Flujo , Ratones , Ratones Endogámicos BALB C
16.
Infect Immun ; 78(1): 168-76, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19884330

RESUMEN

Brucella spp. are intracellular bacteria that cause the most frequent zoonosis in the world. Although recent work has advanced the field of Brucella vaccine development, there remains no safe human vaccine. In order to produce a safe and effective human vaccine, the immune response to Brucella spp. requires greater understanding. Induction of Brucella-specific CD8+ T cells is considered an important aspect of the host response; however, the CD8+ T-cell response is not clearly defined. Discovering the epitope containing antigens recognized by Brucella-specific CD8+ T cells and correlating them with microarray data will aid in determining proteins critical for vaccine development that cover a kinetic continuum during infection. Developing tools to take advantage of the BALB/c mouse model of Brucella melitensis infection will help to clarify the correlates of immunity and improve the efficacy of this model. Two H-2(d) CD8+ T-cell epitopes have been characterized, and a group of immunogenic proteins have provoked gamma interferon production by CD8+ T cells. RYCINSASL and NGSSSMATV induced cognate CD8+ T cells after peptide immunization that showed specific killing in vivo. Importantly, we found by microarray analysis that the genes encoding these epitopes are differentially expressed following macrophage infection, further emphasizing that these discordant genes may play an important role in the pathogenesis of B. melitensis infection.


Asunto(s)
Antígenos Bacterianos/metabolismo , Brucella melitensis/fisiología , Brucelosis/inmunología , Linfocitos T CD8-positivos/fisiología , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Afinidad de Anticuerpos , Epítopos , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/inmunología , Complejo Mayor de Histocompatibilidad , Ratones , Ratones Endogámicos BALB C , Unión Proteica
17.
J Biol Chem ; 284(15): 9892-8, 2009 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-19196716

RESUMEN

Toll-like receptors (TLRs) play essential roles in the activation of innate immune responses against microbial infections. TLRs and downstream adaptor molecules contain a conserved cytoplasmic TIR domain. TIRAP is a TIR domain-containing adaptor protein that recruits the signaling adaptor MyD88 to a subset of TLRs. Many pathogenic microorganisms subvert TLR signaling pathways to suppress host immune responses to benefit their survival and persistence. Brucella encodes a TIR domain-containing protein (TcpB) that inhibits TLR2- and TLR4-mediated NF-kappaB activation. Sequence analysis indicated a moderate level of similarity between TcpB and the TLR adaptor molecule TIRAP. We found that TcpB could efficiently block TIRAP-induced NF-kappaB activation. Subsequent studies revealed that by analogy to TIRAP, TcpB interacts with phosphoinositides through its N-terminal domain and colocalizes with the plasma membrane and components of the cytoskeleton. Our findings suggest that TcpB targets the TIRAP-mediated pathway to subvert TLR signaling. In vivo mouse studies indicated that TcpB-deficient Brucella is defective in systemic spread at the early stages of infection.


Asunto(s)
Proteínas Bacterianas/química , Brucella/metabolismo , Glicoproteínas de Membrana/química , FN-kappa B/metabolismo , Receptores de Interleucina-1/química , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/fisiología , Línea Celular , Citoesqueleto/metabolismo , Células HeLa , Humanos , Glicoproteínas de Membrana/fisiología , Ratones , Datos de Secuencia Molecular , Fosfatidilinositoles/química , Estructura Terciaria de Proteína , Receptores de Interleucina-1/fisiología , Homología de Secuencia de Aminoácido
18.
J Immune Based Ther Vaccines ; 7: 1, 2009 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-19126207

RESUMEN

BACKGROUND: There is no safe, effective human vaccine against brucellosis. Live attenuated Brucella strains are widely used to vaccinate animals. However these live Brucella vaccines can cause disease and are unsafe for humans. Killed Brucella or subunit vaccines are not effective in eliciting long term protection. In this study, we evaluate an approach using a live, non-pathogenic bacteria (E. coli) genetically engineered to mimic the brucellae pathway of infection and present antigens for an appropriate cytolitic T cell response. METHODS: E. coli was modified to express invasin of Yersinia and listerialysin O (LLO) of Listeria to impart the necessary infectivity and antigen releasing traits of the intracellular pathogen, Brucella. This modified E. coli was considered our vaccine delivery system and was engineered to express Green Fluorescent Protein (GFP) or Brucella antigens for in vitro and in vivo immunological studies including cytokine profiling and cytotoxicity assays. RESULTS: The E. coli vaccine vector was able to infect all cells tested and efficiently deliver therapeutics to the host cell. Using GFP as antigen, we demonstrate that the E. coli vaccine vector elicits a Th1 cytokine profile in both primary and secondary immune responses. Additionally, using this vector to deliver a Brucella antigen, we demonstrate the ability of the E. coli vaccine vector to induce specific Cytotoxic T Lymphocytes (CTLs). CONCLUSION: Protection against most intracellular bacterial pathogens can be obtained mostly through cell mediated immunity. Data presented here suggest modified E. coli can be used as a vaccine vector for delivery of antigens and therapeutics mimicking the infection of the pathogen and inducing cell mediated immunity to that pathogen.

19.
Trans R Soc Trop Med Hyg ; 102 Suppl 1: S95-100, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19121697

RESUMEN

Burkholderia pseudomallei, the causative agent of melioidosis, is an important intracellular pathogen in tropical regions. TANK-binding kinase (TBK1), part of the pathway that induces transcription of Type I interferon genes, has been demonstrated to play an important role in controlling intracellular bacterial infections. To investigate the role of tbk1 in protecting against B. pseudomallei we developed tbk1-deficient cell lines by using shRNA for transient knockdown of the tbk1 gene in HeLa and RAW 264.7 cells. In tbk1-deficient RAW cells, the replication of invasive and non-invasive Escherichia coli was significantly increased at 48 h after infection compared with wild-type cells. The result was confirmed using Brucella melitensis in tbk1-deficient HeLa cells, which demonstrated a >1.5-2.0 log higher bacterial count at 6-48 h after infection compared to wild-type cells. By contrast, the growth of Burkholderia pseudomallei expressing either typical (A2) or atypical (G207) lipopolysaccharide was not significantly different between the tbk1-deficient and control cells. These results suggest that the tbk1 gene and its activation may be able to control invasive E. coli, non-invasive E. coli and B. melitensis growth but may not be able to control B. pseudomallei infection. The role of the tbk1 gene in proinflammatory cytokine induction and bacterial intracellular infection needs further investigation to identify mechanistic differences among the life cycles of various intracellular bacteria.


Asunto(s)
Burkholderia pseudomallei/crecimiento & desarrollo , Escherichia coli/crecimiento & desarrollo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Brucella melitensis/crecimiento & desarrollo , Burkholderia pseudomallei/genética , Línea Celular , Células Cultivadas , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Técnicas de Inactivación de Genes/métodos , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología
20.
Anim Health Res Rev ; 7(1-2): 1-11, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17389050

RESUMEN

Brucellosis is a zoonotic disease caused by a number of Brucella species and is characterized by chronic macrophage infection. However, genes that may contribute to intracellular survival of the Brucella species are not well studied. This review presents, first, genomic islands that are present or absent in various Brucella species that may help establish Brucella infection and survival strategies. Second, the alteration in macrophage transcription by Brucella to permit its long-term survival within this hostile intracellular environment. A large number of macrophage gene transcripts are altered following Brucella infection indicating that Brucella is not a silent invader of host cells. Macrophage transcript levels associated with inflammation, apoptosis, signal transduction and vesicular intracellular trafficking are altered during Brucella infection, and likely contribute to intracellular survival of Brucella. Lastly, the host-pathogen interaction events associated with Brucella infection in living mice visualized in real-time using biophotonic imaging. Mice are often used to evaluate Brucella infections; however, Brucella dissemination and pathogenesis is poorly understood in mice. Biophotonic imaging of Brucella infections revealed sites of bacterial localization similar to human infections and different patterns of infection by attenuated or virulent Brucella.


Asunto(s)
Brucella/genética , Brucella/patogenicidad , Brucelosis/veterinaria , Macrófagos/microbiología , Animales , Apoptosis , Bioensayo , Brucelosis/microbiología , Modelos Animales de Enfermedad , Ratones , Transducción de Señal , Especificidad de la Especie , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...