Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4174, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755126

RESUMEN

The transition from natal downs for heat conservation to juvenile feathers for simple flight is a remarkable environmental adaptation process in avian evolution. However, the underlying epigenetic mechanism for this primary feather transition is mostly unknown. Here we conducted time-ordered gene co-expression network construction, epigenetic analysis, and functional perturbations in developing feather follicles to elucidate four downy-juvenile feather transition events. We report that extracellular matrix reorganization leads to peripheral pulp formation, which mediates epithelial-mesenchymal interactions for branching morphogenesis. α-SMA (ACTA2) compartmentalizes dermal papilla stem cells for feather renewal cycling. LEF1 works as a key hub of Wnt signaling to build rachis and converts radial downy to bilateral symmetry. Novel usage of scale keratins strengthens feather sheath with SOX14 as the epigenetic regulator. We show that this primary feather transition is largely conserved in chicken (precocial) and zebra finch (altricial) and discuss the possibility that this evolutionary adaptation process started in feathered dinosaurs.


Asunto(s)
Pollos , Plumas , Pinzones , Animales , Plumas/crecimiento & desarrollo , Plumas/metabolismo , Pollos/genética , Pinzones/genética , Regulación del Desarrollo de la Expresión Génica , Matriz Extracelular/metabolismo , Epigénesis Genética , Redes Reguladoras de Genes , Vía de Señalización Wnt , Queratinas/metabolismo , Queratinas/genética , Evolución Biológica , Morfogénesis/genética
2.
Stem Cells Transl Med ; 13(3): 293-308, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38173411

RESUMEN

Human adipose-derived stem cells (ASCs) have shown immense potential for regenerative medicine. Our previous work demonstrated that chitosan nano-deposited surfaces induce spheroid formation and differentiation of ASCs for treating sciatic nerve injuries. However, the underlying cell fate and differentiation mechanisms of ASC-derived spheroids remain unknown. Here, we investigate the epigenetic regulation and signaling coordination of these therapeutic spheroids. During spheroid formation, we observed significant increases in histone 3 trimethylation at lysine 4 (H3K4me3), lysine 9 (H3K9me3), and lysine 27 (H3K27me3), accompanied by increased histone deacetylase (HDAC) activities and decreased histone acetyltransferase activities. Additionally, HDAC5 translocated from the cytoplasm to the nucleus, along with increased nuclear HDAC5 activities. Utilizing single-cell RNA sequencing (scRNA-seq), we analyzed the chitosan-induced ASC spheroids and discovered distinct cluster subpopulations, cell fate trajectories, differentiation traits, and signaling networks using the 10x Genomics platform, R studio/language, and the Ingenuity Pathway Analysis (IPA) tool. Specific subpopulations were identified within the spheroids that corresponded to a transient reprogramming state (Cluster 6) and the endpoint cell state (Cluster 3). H3K4me3 and H3K9me3 were discovered as key epigenetic regulators by IPA to initiate stem cell differentiation in Cluster 6 cells, and confirmed by qPCR and their respective histone methyltransferase inhibitors: SNDX-5613 (a KMT2A inhibitor for H3K4me3) and SUVi (an SUV39H1 inhibitor for H3K9me3). Moreover, H3K9me3 and HDAC5 were involved in regulating downstream signaling and neuronal markers during differentiation in Cluster 3 cells. These findings emphasize the critical role of epigenetic regulation, particularly H3K4me3, H3K9me3, and HDAC5, in shaping stem cell fate and directing lineage-specific differentiation.


Asunto(s)
Quitosano , Histonas , Humanos , Histonas/metabolismo , Epigénesis Genética , Lisina/metabolismo , Diferenciación Celular , Células Madre , Histona Desacetilasas
3.
NPJ Regen Med ; 8(1): 65, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996466

RESUMEN

Tissue patterning is critical for the development and regeneration of organs. To advance the use of engineered reconstituted skin organs, we study cardinal features important for tissue patterning and hair regeneration. We find they spontaneously form spheroid configurations, with polarized epidermal cells coupled with dermal cells through a newly formed basement membrane. Functionally, the spheroid becomes competent morphogenetic units (CMU) that promote regeneration of tissue patterns. The emergence of new cell types and molecular interactions during CMU formation was analyzed using scRNA-sequencing. Surprisingly, in newborn skin explants, IFNr signaling can induce apical-basal polarity in epidermal cell aggregates. Dermal-Tgfb induces basement membrane formation. Meanwhile, VEGF signaling mediates dermal cell attachment to the epidermal cyst shell, thus forming a CMU. Adult mouse and human fetal scalp cells fail to form a CMU but can be restored by adding IFNr or VEGF to achieve hair regeneration. We find different multi-cellular configurations and molecular pathways are used to achieve morphogenetic competence in developing skin, wound-induced hair neogenesis, and reconstituted explant cultures. Thus, multiple paths can be used to achieve tissue patterning. These insights encourage more studies of "in vitro morphogenesis" which may provide novel strategies to enhance regeneration.

4.
Res Sq ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37886492

RESUMEN

The transition from natal downs for heat conservation to juvenile feathers for simple flight is a remarkable environmental adaptation process in avian evolution. However, the underlying epigenetic mechanism for this primary feather transition is mostly unknown. Here we conducted time-ordered gene co-expression network construction, epigenetic analysis, and functional perturbations in developing feather follicles to elucidate four downy-juvenile feather transition events. We discovered that LEF1 works as a key hub of Wnt signaling to build rachis and converts radial downy to bilateral symmetry. Extracellular matrix reorganization leads to peripheral pulp formation, which mediates epithelial -mesenchymal interactions for branching morphogenesis. ACTA2 compartments dermal papilla stem cells for feather cycling. Novel usage of scale keratins strengthens feather sheath with SOX14 as the epigenetic regulator. We found this primary feather transition largely conserved in chicken (precocious) and zebra finch (altricial) and discussed the possibility that this evolutionary adaptation process started in feathered dinosaurs.

5.
Proc Natl Acad Sci U S A ; 120(36): e2221982120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37643215

RESUMEN

Stem cells in organoids self-organize into tissue patterns with unknown mechanisms. Here, we use skin organoids to analyze this process. Cell behavior videos show that the morphological transformation from multiple spheroidal units with morphogenesis competence (CMU) to planar skin is characterized by two abrupt cell motility-increasing events before calming down. The self-organizing processes are controlled by a morphogenetic module composed of molecular sensors, modulators, and executers. Increasing dermal stiffness provides the initial driving force (driver) which activates Yap1 (sensor) in epidermal cysts. Notch signaling (modulator 1) in epidermal cyst tunes the threshold of Yap1 activation. Activated Yap1 induces Wnts and MMPs (epidermal executers) in basal cells to facilitate cellular flows, allowing epidermal cells to protrude out from the CMU. Dermal cell-expressed Rock (dermal executer) generates a stiff force bridge between two CMU and accelerates tissue mixing via activating Laminin and ß1-integrin. Thus, this self-organizing coalescence process is controlled by a mechano-chemical circuit. Beyond skin, self-organization in organoids may use similar mechano-chemical circuit structures.


Asunto(s)
Epidermis , Piel , Personalidad , Organoides , Emociones , Proteínas Adaptadoras Transductoras de Señales
6.
Sci Transl Med ; 15(688): eabq2395, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36947594

RESUMEN

Adult mammals are incapable of multitissue regeneration, and augmentation of this potential may shift current therapeutic paradigms. We found that a common co-receptor of interleukin 6 (IL-6) cytokines, glycoprotein 130 (gp130), serves as a major nexus integrating various context-specific signaling inputs to either promote regenerative outcomes or aggravate disease progression. Via genetic and pharmacological experiments in vitro and in vivo, we demonstrated that a signaling tyrosine 814 (Y814) within gp130 serves as a major cellular stress sensor. Mice with constitutively inactivated Y814 (F814) were resistant to surgically induced osteoarthritis as reflected by reduced loss of proteoglycans, reduced synovitis, and synovial fibrosis. The F814 mice also exhibited enhanced regenerative, not reparative, responses after wounding in the skin. In addition, pharmacological modulation of gp130 Y814 upstream of the SRC and MAPK circuit by a small molecule, R805, elicited a protective effect on tissues after injury. Topical administration of R805 on mouse skin wounds resulted in enhanced hair follicle neogenesis and dermal regeneration. Intra-articular administration of R805 to rats after medial meniscal tear and to canines after arthroscopic meniscal release markedly mitigated the appearance of osteoarthritis. Single-cell sequencing data demonstrated that genetic and pharmacological modulation of Y814 resulted in attenuation of inflammatory gene signature as visualized by the anti-inflammatory macrophage and nonpathological fibroblast subpopulations in the skin and joint tissue after injury. Together, our study characterized a molecular mechanism that, if manipulated, enhances the intrinsic regenerative capacity of tissues through suppression of a proinflammatory milieu and prevents pathological outcomes in injury and disease.


Asunto(s)
Citocinas , Osteoartritis , Ratones , Ratas , Animales , Perros , Receptor gp130 de Citocinas , Interleucina-6 , Proteoglicanos , Mamíferos
7.
Artículo en Inglés | MEDLINE | ID: mdl-36617639

RESUMEN

Regeneration allows animals to replace and restore injured tissues. Animal phyla have evolved different regenerative strategies to increase survival advantages. In contrast to the earlier principle that regeneration recapitulates development, recent studies indicate that wound healing in adult mammals is modified by the inflammatory response to injury, and biochemical signaling from immune and other cellular systems may modulate wound reparative responses to achieve successful tissue regeneration. Here we briefly survey different regenerative strategies used by animals across different phyla. We next focus on skin regeneration using the mouse wound-induced hair neogenesis model as an example to show the circumstances required to rebuild a new, morphogenetically competent field in the adult mammalian skin. Parallel investigations in African spiny mice (Acomys sp.) have further shown that skin rigidity can also modulate wound bed properties to facilitate de novo formation of skin appendages. These regenerating, periodically arranged hair primordia emerge using Turing activator/inhibitor principles with activities derived from sources that differ from those used in embryonic development, including the mechanical environment. Thus, a novel combination of biochemical, immunological, and mechanical signaling strategies can work together to achieve successful cutaneous regeneration in adult animals, potentially inspiring novel therapeutic strategies.


Asunto(s)
Piel , Cicatrización de Heridas , Animales , Cicatrización de Heridas/fisiología , Murinae/fisiología , Modelos Animales de Enfermedad
8.
Pharmaceutics ; 14(9)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36145674

RESUMEN

In the large full-thickness mouse skin regeneration model, wound-induced hair neogenesis (WIHN) occurs in the wound center. This implies a spatial regulation of hair regeneration. The role of mechanotransduction during tissue regeneration is poorly understood. Here, we created wounds with equal area but different shapes to understand if perturbing mechanical forces change the area and quantity of de novo hair regeneration. Atomic force microscopy of wound stiffness demonstrated a stiffness gradient across the wound with the wound center softer than the margin. Reducing mechanotransduction signals using FAK or myosin II inhibitors significantly increased WIHN and, conversely, enhancing these signals with an actin stabilizer reduced WIHN. Here, α-SMA was downregulated in FAK inhibitor-treated wounds and lowered wound stiffness. Wound center epithelial cells exhibited a spherical morphology relative to wound margin cells. Differential gene expression analysis of FAK inhibitor-treated wound RNAseq data showed that cytoskeleton-, integrin-, and matrix-associated genes were downregulated, while hair follicular neogenesis, cell proliferation, and cell signaling genes were upregulated. Immunohistochemistry staining showed that FAK inhibition increased pSTAT3 nuclear staining in the regenerative wound center, implying enhanced signaling for hair follicular neogenesis. These findings suggest that controlling wound stiffness modulates tissue regeneration encompassing epithelial competence, tissue patterning, and regeneration during wound healing.

9.
Nat Commun ; 12(1): 2595, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972536

RESUMEN

Tissue regeneration is a process that recapitulates and restores organ structure and function. Although previous studies have demonstrated wound-induced hair neogenesis (WIHN) in laboratory mice (Mus), the regeneration is limited to the center of the wound unlike those observed in African spiny (Acomys) mice. Tissue mechanics have been implicated as an integral part of tissue morphogenesis. Here, we use the WIHN model to investigate the mechanical and molecular responses of laboratory and African spiny mice, and report these models demonstrate opposing trends in spatiotemporal morphogenetic field formation with association to wound stiffness landscapes. Transcriptome analysis and K14-Cre-Twist1 transgenic mice show the Twist1 pathway acts as a mediator for both epidermal-dermal interactions and a competence factor for periodic patterning, differing from those used in development. We propose a Turing model based on tissue stiffness that supports a two-scale tissue mechanics process: (1) establishing a morphogenetic field within the wound bed (mm scale) and (2) symmetry breaking of the epidermis and forming periodically arranged hair primordia within the morphogenetic field (µm scale). Thus, we delineate distinct chemo-mechanical events in building a Turing morphogenesis-competent field during WIHN of laboratory and African spiny mice and identify its evo-devo advantages with perspectives for regenerative medicine.


Asunto(s)
Epidermis/anatomía & histología , Epidermis/metabolismo , Folículo Piloso/metabolismo , Morfogénesis/fisiología , Regeneración/fisiología , Proteína 1 Relacionada con Twist/metabolismo , Cicatrización de Heridas/fisiología , Animales , Epidermis/fisiología , Perfilación de la Expresión Génica , Folículo Piloso/anatomía & histología , Folículo Piloso/fisiología , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis por Micromatrices , Microscopía de Fuerza Atómica , Modelos Psicológicos , Morfogénesis/genética , Murinae , RNA-Seq , Regeneración/genética , Medicina Regenerativa , Transducción de Señal/genética , Transducción de Señal/fisiología , Análisis Espacio-Temporal , Proteína 1 Relacionada con Twist/genética , Cicatrización de Heridas/genética
10.
Front Cell Dev Biol ; 9: 635340, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33681217

RESUMEN

During aging, the skin undergoes changes in architecture and composition. Skin aging phenotypes occur due to accumulated changes in the genome/epigenome, cytokine/cell adhesion, cell distribution/extracellular matrix (ECM), etc. Here we review data suggesting that tissue mechanics also plays a role in skin aging. While mouse and human skin share some similarities, their skin architectures differ in some respects. However, we use recent research in haired murine skin because of the available experimental data. Skin suffers from changes in both its appendages and inter-appendage regions. The elderly exhibit wrinkles and loose dermis and are more likely to suffer from wounds and superficial abrasions with poor healing. They also have a reduction in the number of skin appendages. While telogen is prolonged in aging murine skin, hair follicle stem cells can be rejuvenated to enter anagen if transplanted to a young skin environment. We highlight recent single-cell analyses performed on epidermis and aging human skin which identified new basal cell subpopulations that shift in response to wounding. This may be due to alterations of basement membrane stiffness which would change tissue mechanics in aging skin, leading to altered homeostatic dynamics. We propose that the extracellular matrix (ECM) may play a key role as a chemo-mechanical integrator of the multi-layered senescence-associated signaling pathways, dictating the tissue mechanical landscape of niche microenvironments in aging phenotypes. We show examples where failed chemo-mechanical signaling leads to deteriorating homeostasis during skin aging and suggest potential therapeutic strategies to guide future research to delay the aging processes.

11.
Proc Natl Acad Sci U S A ; 116(22): 10858-10867, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31072931

RESUMEN

Networked structures integrate numerous elements into one functional unit, while providing a balance between efficiency, robustness, and flexibility. Understanding how biological networks self-assemble will provide insights into how these features arise. Here, we demonstrate how nature forms exquisite muscle networks that can repair, regenerate, and adapt to external perturbations using the feather muscle network in chicken embryos as a paradigm. The self-assembled muscle networks arise through the implementation of a few simple rules. Muscle fibers extend outward from feather buds in every direction, but only those muscle fibers able to connect to neighboring buds are eventually stabilized. After forming such a nearest-neighbor configuration, the network can be reconfigured, adapting to perturbed bud arrangement or mechanical cues. Our computational model provides a bioinspired algorithm for network self-assembly, with intrinsic or extrinsic cues necessary and sufficient to guide the formation of these regenerative networks. These robust principles may serve as a useful guide for assembling adaptive networks in other contexts.


Asunto(s)
Aves/crecimiento & desarrollo , Tipificación del Cuerpo/fisiología , Plumas/crecimiento & desarrollo , Modelos Biológicos , Desarrollo de Músculos/fisiología , Algoritmos , Animales , Regeneración/fisiología , Piel/crecimiento & desarrollo
12.
PLoS Biol ; 17(3): e3000195, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30908496

RESUMEN

Periodic patterning represents a fundamental process in tissue morphogenesis. In chicken dorsal skin, feather formation starts from the midline; then the morphogenetic wave propagates bilaterally, leaving a regular hexagonal array of feather germs. Yet, in vitro reconstitution showed feather germs appear simultaneously, leading to the hypothesis that the feather-forming wave results from the coupling of local Turing patterning processes with an unidentified global event. In this issue, Ho and colleagues showed such a global event in chicken feathers involves a spreading Ectodysplasin A (EDA) wave and Fibroblast Growth Factor 20 (FGF20)-cell aggregate-based mechanochemical coupling. In flightless birds, feather germs form periodically but without precise hexagonal patterning due to the lack of global wave.


Asunto(s)
Tipificación del Cuerpo , Plumas , Animales , Recuento de Células , Morfogénesis , Transducción de Señal
13.
Exp Dermatol ; 28(4): 442-449, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30734959

RESUMEN

Wound-induced hair follicle neogenesis (WIHN) has been demonstrated in laboratory mice (Mus musculus) after large (>1.5 × 1.5 cm2 ) full-thickness wounds. WIHN occurs more robustly in African spiny mice (Acomys cahirinus), which undergo autotomy to escape predation. Yet, the non-WIHN regenerative ability of the spiny mouse skin has not been explored. To understand the regenerative ability of the spiny mouse, we characterized skin features such as hair types, hair cycling, and the response to small and large wounds. We found that spiny mouse skin contains a large portion of adipose tissue. The spiny mouse hair bulge is larger and shows high expression of stem cell markers, K15 and CD34. All hair types cycle synchronously. To our surprise, the hair cycle is longer and less frequent than in laboratory mice. Newborn hair follicles in anagen are more mature than C57Bl/6 and demonstrate molecular features similar to C57Bl/6 adult hairs. The second hair cycling wave begins at week 4 and lasts for 5 weeks, then telogen lasts for 30 weeks. The third wave has a 6-week anagen, and even longer telogen. After plucking, spiny mouse hairs regenerate in about 5 days, similar to that of C57Bl/6. After large full-thickness excisional wounding, there is more de novo hair formation than C57Bl/6. Also, all hair types are present and pigmented, in contrast to the unpigmented zigzag hairs in C57Bl/6 WIHN. These findings shed new light on the regenerative biology of WIHN and may help us understand the control of skin repair vs regeneration.


Asunto(s)
Cabello/crecimiento & desarrollo , Murinae/fisiología , Regeneración , Piel , Animales , Color del Cabello , Ratones , Especificidad de la Especie
14.
Exp Dermatol ; 28(4): 464-471, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29105155

RESUMEN

Following skin wounding, the healing outcome can be: regeneration, repair with normal scar tissue, repair with hypertrophic scar tissue or the formation of keloids. The role of chemical factors in wound healing has been extensively explored, and while there is evidence suggesting the role of mechanical forces, its influence is much less well defined. Here, we provide a brief review on the recent progress of the role of mechanical force in skin wound healing by comparing laboratory mice, African spiny mice, fetal wound healing and adult scar keloid formation. A comparison across different species may provide insight into key regulators. Interestingly, some findings suggest tension can induce an immune response, and this provides a new link between mechanical and chemical forces. Clinically, manipulating skin tension has been demonstrated to be effective for scar prevention and treatment, but not for tissue regeneration. Utilising this knowledge, specialists may modulate regulatory factors and develop therapeutic strategies to reduce scar formation and promote regeneration.


Asunto(s)
Cicatrización de Heridas , Animales , Fenómenos Biomecánicos , Cicatriz/etiología , Cicatriz/prevención & control , Humanos , Estrés Mecánico
15.
J Dermatol Sci ; 90(3): 232-240, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29567352

RESUMEN

Mechanical forces are known to regulate homeostasis of the skin and play a role in the pathogenesis of skin diseases. The epidermis consists of keratinocytes that are tightly adhered to each other by cell junctions. Defects in keratins or desmosomal/hemidesmosomal proteins lead to the attenuation of mechanical strength and formation of intraepidermal blisters in the case of epidermolysis bullosa simplex. The dermis is rich in extracellular matrix, especially collagen, and provides the majority of tensile force in the skin. Keloid and hypertrophic scar, which is the result of over-production of collagen by fibroblasts during the wound healing, are associated with extrinsic tensile forces and changes of intrinsic mechanical properties of the cell. Increasing evidences shows that stiffness of the skin environment determines the regenerative ability during wound healing process. Mechanotransduction pathways are also involved in the morphogenesis and cyclic growth of hair follicles. The development of androgenetic alopecia is correlated to tensile forces generated by the fibrous tissue underlying the scalp. Acral melanoma predominantly occurs in the weight-bearing area of the foot suggesting the role of mechanical stress. Increased dermal stiffness from fibrosis might be the cause of recessive dystrophic epidermolysis bullosa associated squamous cell carcinoma. Strategies to change the mechanical forces or modify the mechanotransduction signals may lead to a new way to treat skin diseases and promote skin regeneration.


Asunto(s)
Desmosomas/patología , Mecanotransducción Celular , Enfermedades de la Piel/patología , Piel/patología , Cicatrización de Heridas/fisiología , Colágeno/metabolismo , Matriz Extracelular , Fibroblastos/citología , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Queratinocitos/patología , Queratinas/metabolismo , Piel/citología
16.
J Biomed Sci ; 24(1): 58, 2017 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-28822352

RESUMEN

BACKGROUND: Vibrio vulnificus is a marine bacterial species that causes opportunistic infections manifested by serious skin lesions and fulminant septicemia in humans. We have previously shown that the multifunctional autoprocessing repeats in toxin (MARTXVv1) of a biotype 1 V. vulnificus strain promotes survival of this organism in the host by preventing it from engulfment by the phagocytes. The purpose of this study was to further explore how MARTXVv1 inhibits phagocytosis of this microorganism by the macrophage. METHODS: We compared between a wild-type V. vulnificus strain and its MARTXVv1-deficient mutant for a variety of phagocytosis-related responses, including morphological change and activation of signaling molecules, they induced in the macrophage. We also characterized a set of MARTXVv1 domain-deletion mutants to define the regions associated with antiphagocytosis activity. RESULTS: The RAW 264.7 cells and mouse peritoneal exudate macrophages underwent cell rounding accompanied by F-actin disorganization in the presence of MARTXVv1. In addition, phosphorylation of some F-actin rearrangement-associated signaling molecules, including Lyn, Fgr and Hck of the Src family kinases (SFKs), focal adhesion kinase (FAK), proline-rich tyrosine kinase 2 (Pyk2), phosphoinositide 3-kinase (PI3K) and Akt, but not p38, was decreased. By using specific inhibitors, we found that these kinases were all involved in the phagocytosis of MARTXVv1-deficient mutant in an order of SFKs-FAK/Pyk2-PI3K-Akt. Deletion of the effector domains in the central region of MARTXVv1 could lead to reduced cytotoxicity, depending on the region and size of deletion, but did not affect the antiphagocytosis activity and ability to cause rounding of macrophage. Reduced phosphorylation of Akt was closely associated with inhibition of phagocytosis by the wild-type strain and MARTXVv1 domain-deletion mutants, and expression of the constitutively active Akt, myr-Akt, enhanced the engulfment of these strains by macrophage. CONCLUSIONS: MARTXVv1 could inactivate the SFKs-FAK/Pyk2-PI3K-Akt signaling pathway in the macrophages. This might lead to impaired phagocytosis of the V. vulnificus-infected macrophage. The majority of the central region of MARTXVv1 is not associated with the antiphagocytosis activity.


Asunto(s)
Toxinas Bacterianas/inmunología , Fagocitosis/inmunología , Vibriosis/microbiología , Vibrio vulnificus/inmunología , Vibrio vulnificus/patogenicidad , Animales , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Citotoxinas/inmunología , Citotoxinas/metabolismo , Macrófagos/inmunología , Masculino , Ratones Endogámicos BALB C , Vibriosis/patología , Vibrio vulnificus/genética
17.
Biochim Biophys Acta Gen Subj ; 1861(3): 624-635, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28063985

RESUMEN

BACKGROUND: Focal adhesions (FAs) are large, dynamic protein complexes located close to the plasma membrane, which serve as the mechanical linkages and a biochemical signaling hub of cells. The coordinated and dynamic regulation of focal adhesion is required for cell migration. Degradation, or turnover, of FAs is a major event at the trailing edge of a migratory cell, and is mediated by Ca2+/calpain-dependent proteolysis and disassembly. Here, we investigated how Ca2+ influx induces cascades of FA turnover in living cells. METHODS: Images obtained with a total internal reflection fluorescence microscope (TIRFM) showed that Ca2+ ions induce different processes in the FA molecules focal adhesion kinase (FAK), paxillin, vinculin, and talin. Three mutated calpain-resistant FA molecules, FAK-V744G, paxillin-S95G, and talin-L432G, were used to clarify the role of each FA molecule in FA turnover. RESULTS: Vinculin was resistant to degradation and was not significantly affected by the presence of mutated calpain-resistant FA molecules. In contrast, talin was more sensitive to calpain-mediated turnover than the other molecules. Three-dimensional (3D) fluorescence imaging and immunoblotting demonstrated that outer FA molecules were more sensitive to calpain-mediated proteolysis than internal FA molecules. Furthermore, cell contraction is not involved in degradation of FA. CONCLUSIONS: These results suggest that Ca2+-mediated degradation of FAs was mediated by both proteolysis and disassembly. The 3D architecture of FAs is related to the different dynamics of FA molecule degradation during Ca2+-mediated FA turnover. GENERAL SIGNIFICANCE: This study will help us to clearly understand the underlying mechanism of focal adhesion turnover by Ca2+.


Asunto(s)
Calcio/metabolismo , Calpaína/metabolismo , Adhesiones Focales/metabolismo , Adhesión Celular/fisiología , Línea Celular , Membrana Celular/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Paxillin/metabolismo , Proteolisis , Transducción de Señal/fisiología , Talina/metabolismo , Vinculina/metabolismo
18.
Cell Adh Migr ; 10(4): 368-77, 2016 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-26919488

RESUMEN

Any cellular response leading to morphological changes is highly tuned to balance the force generated from structural reorganization, provided by actin cytoskeleton. Actin filaments serve as the backbone of intracellular force, and transduce external mechanical signal via focal adhesion complex into the cell. During migration, cells not only undergo molecular changes but also rapid mechanical modulation. Here we focus on determining, the role of spatial distribution of mechanical changes of actin filaments in epithelial, mesenchymal, fibrotic and cancer cells with non-migration, directional migration, and non-directional migration behaviors using the atomic force microscopy. We found 1) non-migratory cells only generated one type of filament elasticity, 2) cells generating spatially distributed two types of filament elasticity showed directional migration, and 3) pathologic cells that autonomously generated two types of filament elasticity without spatial distribution were actively migrating non-directionally. The demonstration of spatial regulation of filament elasticity of different cell types at the nano-scale highlights the coupling of cytoskeletal function with physical characters at the sub-cellular level, and provides new research directions for migration related disease.


Asunto(s)
Movimiento Celular , Elasticidad , Actinas/metabolismo , Animales , Línea Celular , Polaridad Celular , Fibroblastos/patología , Humanos , Queloide/patología , Ratones , Microtúbulos/metabolismo , Osteosarcoma/patología , Polimerizacion
19.
Oncotarget ; 6(25): 20946-58, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26189182

RESUMEN

The stiffness sensing ability is required to respond to the stiffness of the matrix. Here we determined whether normal cells and cancer cells display distinct mechanical phenotypes. Cancer cells were softer than their normal counterparts, regardless of the type of cancer (breast, bladder, cervix, pancreas, or Ha-RasV12-transformed cells). When cultured on matrices of varying stiffness, low stiffness decreased proliferation in normal cells, while cancer cells and transformed cells lost this response. Thus, cancer cells undergo a change in their mechanical phenotype that includes cell softening and loss of stiffness sensing. Caveolin-1, which is suppressed in many tumor cells and in oncogene-transformed cells, regulates the mechanical phenotype. Caveolin-1-upregulated RhoA activity and Y397FAK phosphorylation directed actin cap formation, which was positively correlated with cell elasticity and stiffness sensing in fibroblasts. Ha-RasV12-induced transformation and changes in the mechanical phenotypes were reversed by re-expression of caveolin-1 and mimicked by the suppression of caveolin-1 in normal fibroblasts. This is the first study to describe this novel role for caveolin-1, linking mechanical phenotype to cell transformation. Furthermore, mechanical characteristics may serve as biomarkers for cell transformation.


Asunto(s)
Caveolina 1/metabolismo , Neoplasias/patología , Proteínas ras/metabolismo , Actinas/química , Animales , Fenómenos Biomecánicos , Proliferación Celular , Transformación Celular Neoplásica , Colágeno/química , Perros , Elasticidad , Inhibidores Enzimáticos/química , Femenino , Fibroblastos/metabolismo , Genes ras , Humanos , Células de Riñón Canino Madin Darby , Ratones , Microscopía de Fuerza Atómica , Microscopía Confocal , Microscopía Fluorescente , Células 3T3 NIH , Neoplasias/metabolismo , Fenotipo , Fosforilación , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Proteína de Unión al GTP rhoA/metabolismo
20.
Exp Dermatol ; 24(8): 579-84, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25877039

RESUMEN

One of the key features of keloid is its fibroblasts migrating beyond the original wound border. During migration, cells not only undergo molecular changes but also mechanical modulation. This process is led by actin filaments serving as the backbone of intra-cellular force and transduces external mechanical signal via focal adhesion complex into the cell. Here, we focus on determining the mechanical changes of actin filaments and the spatial distribution of forces in response to changing chemical stimulations and during cell migration. Atomic force microscopy and micropost array detector are used to determine and compare the magnitude and distribution of filament elasticity and force generation in fibroblasts and keloid fibroblasts. We found both filament elasticity and force generation show spatial distribution in a polarized and migrating cell. Such spatial distribution is disrupted when mechano-signalling is perturbed by focal adhesion kinase inhibitor and in keloid fibroblasts. The demonstration of keloid pathology at the nanoscale highlights the coupling of cytoskeletal function with physical characters at the subcellular level and provides new research directions for migration-related disease such as keloid.


Asunto(s)
Citoesqueleto/fisiología , Fibroblastos/fisiología , Queloide/patología , Citoesqueleto de Actina/fisiología , Animales , Movimiento Celular , Polaridad Celular , Elasticidad , Fibroblastos/ultraestructura , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Quinasa 1 de Adhesión Focal/fisiología , Adhesiones Focales/fisiología , Humanos , Ratones , Microscopía de Fuerza Atómica , Células 3T3 NIH , Quinolonas/farmacología , Estrés Mecánico , Sulfonas/farmacología , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...