Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytochem Anal ; 35(3): 579-585, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38130156

RESUMEN

INTRODUCTION: The active compound (E)-1-(3',4'-dimethoxyphenyl)butadiene (DMPBD) isolated from the rhizomes of Zingiber cassumunar Roxb. has potent anti-inflammatory and anticancer activities. Although DMPBD is one of the promising drug candidates for phytomedicine, its limited stability impedes its widespread use. For the development of new drugs, the assessment of their chemical stability is essential, ensuring they maintain their properties within specified limits throughout the period from production until use. OBJECTIVE: In the present study, we aimed to evaluate the stability of DMPBD under various conditions, including different solvents, temperatures, and lighting conditions, to identify the factors affecting stability and optimize the storage and handling conditions. METHODOLOGY: DMPBD samples subjected to the different conditions tested were monitored by quantitative 1H NMR (qHNMR), using an internal standard for the determination of the absolute quantity of DMPBD as a function of time and the changes thereof within 1 month. RESULTS: Significant decomposition of DMPBD was observed in chloroform-d1, whereas its content remained constant in methanol-d4. The content of DMPBD was maintained upon storage at temperatures below 4°C, both as methanolic solution and in the crude extract. Exposure to light had a slight negative impact on its contents. Some degradation products could be identified as resulting from O2-induced cleavage of the diene moiety. CONCLUSIONS: For pharmacological/therapeutic applications, DMPBD should be stored in the form of the crude extract or as a purified material in methanolic solution. Ideally, the storage temperature should be below 4°C and O2 should be excluded.


Asunto(s)
Extractos Vegetales , Zingiberaceae , Extractos Vegetales/química , Butadienos/análisis , Butadienos/farmacología , Rizoma/química , Zingiberaceae/química
2.
J Am Chem Soc ; 145(22): 12124-12135, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37235775

RESUMEN

Hydroxycarbenes can be generated and structurally characterized in the gas phase by collision-induced decarboxylation of α-keto carboxylic acids, followed by infrared ion spectroscopy. Using this approach, we have shown earlier that quantum-mechanical hydrogen tunneling (QMHT) accounts for the isomerization of a charge-tagged phenylhydroxycarbene to the corresponding aldehyde in the gas phase and above room temperature. Herein, we report the results of our current study on aliphatic trialkylammonio-tagged systems. Quite unexpectedly, the flexible 3-(trimethylammonio)propylhydroxycarbene turned out to be stable─no H-shift to either aldehyde or enol occurred. As supported by density functional theory calculations, this novel QMHT inhibition is due to intramolecular H-bonding of a mildly acidic α-ammonio C-H bonds to the hydroxyl carbene's C-atom (C:···H-C). To further support this hypothesis, (4-quinuclidinyl)hydroxycarbenes were synthesized, whose rigid structure prevents this intramolecular H-bonding. The latter hydroxycarbenes underwent "regular" QMHT to the aldehyde at rates comparable to, e.g., methylhydroxycarbene studied by Schreiner et al. While QMHT has been shown for a number of biological H-shift processes, its inhibition by H-bonding disclosed here may serve for the stabilization of highly reactive intermediates such as carbenes, even as a mechanism for biasing intrinsic selectivity patterns.

3.
Angew Chem Int Ed Engl ; 60(36): 19631-19636, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34010504

RESUMEN

We report the discovery that simple carboxylic acids, such as benzoic acid, boost the activity of N-heterocyclic carbene (NHC) catalysts in the oxidative esterification of aldehydes. A simple and efficient protocol for the transformation of a wide range of sterically hindered α- and ß-substituted aliphatic aldehydes/enals, catalyzed by a novel and readily accessible N-Mes-/N-2,4,6-trichlorophenyl 1,2,4-triazolium salt, and benzoic acid as co-catalyst, was developed. A whole series of α/ß-substituted aliphatic aldehydes/enals hitherto not amenable to NHC-catalyzed esterification could be reacted at typical catalyst loadings of 0.02-1.0 mol %. For benzaldehyde, even 0.005 mol % of NHC catalyst proved sufficient: the lowest value ever achieved in NHC catalysis. Preliminary studies point to carboxylic acid-induced acceleration of acyl transfer from azolium enolate intermediates as the mechanistic basis of the observed effect.

4.
Sci Rep ; 11(1): 2391, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504837

RESUMEN

Clinical translation of pluripotent stem cell (PSC) derivatives is hindered by the tumorigenic risk from residual undifferentiated cells. Here, we identified salicylic diamines as potent agents exhibiting toxicity to murine and human PSCs but not to cardiomyocytes (CMs) derived from them. Half maximal inhibitory concentrations (IC50) of small molecules SM2 and SM6 were, respectively, 9- and 18-fold higher for human than murine PSCs, while the IC50 of SM8 was comparable for both PSC groups. Treatment of murine embryoid bodies in suspension differentiation cultures with the most effective small molecule SM6 significantly reduced PSC and non-PSC contamination and enriched CM populations that would otherwise be eliminated in genetic selection approaches. All tested salicylic diamines exerted their toxicity by inhibiting the oxygen consumption rate (OCR) in PSCs. No or only minimal and reversible effects on OCR, sarcomeric integrity, DNA stability, apoptosis rate, ROS levels or beating frequency were observed in PSC-CMs, although effects on human PSC-CMs seemed to be more deleterious at higher SM-concentrations. Teratoma formation from SM6-treated murine PSC-CMs was abolished or delayed compared to untreated cells. We conclude that salicylic diamines represent promising compounds for PSC removal and enrichment of CMs without the need for other selection strategies.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Diaminas/farmacología , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Diaminas/química , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Estructura Molecular , Miocitos Cardíacos/citología , Consumo de Oxígeno/efectos de los fármacos , Teratoma/tratamiento farmacológico , Teratoma/etiología , Teratoma/patología
5.
Org Lett ; 22(2): 386-390, 2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-31904243

RESUMEN

An efficient oxidative NHC-catalyzed one-step transformation of (S)- or (R)-8-oxocitronellal to nepetalactone (NL) in enantio- and diastereomerically pure form has been developed. Several new and "easy to make" N-Mes- or N-Dipp-substituted 1,2,4-triazolium salts carrying nitroaromatic groups on N1 were synthesized and evaluated as precatalysts in combination with base and stoichiometric organic oxidant. Under optimized conditions, NLs are accessible in very good yields and diastereomerically pure under mild conditions. The oxidant used could be recovered and recycled under operationally simple conditions.

6.
J Am Chem Soc ; 138(8): 2670-7, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26797403

RESUMEN

As reported by Scheidt and Bode in 2005, sterically nonencumbered α,ß-enals are readily converted to saturated esters in the presence of alcohols and N-heterocyclic carbene catalysts, e.g., benzimidazolylidenes or triazolylidenes. However, substituents at the α- or ß-position of the α,ß-enal substrate are typically not tolerated, thus severely limiting the substrate spectrum. On the basis of our earlier mechanistic studies, a set of N-Mes- or N-Dipp-substituted 1,2,4-triazolium salts were synthesized and evaluated as (pre)catalysts in the redox esterification of various α- or ß-substituted enals. In particular the 1,4-bis-Mes/Dipp-1,2,4-triazolylidenes overcome the above limitations and efficiently catalyze the redox esterification of a whole series of α/ß-substituted enals hitherto not amenable to NHC-catalyzed transformations. The synthetic value of 1,4-bis-Mes/Dipp-1,2,4-triazolylidenes is further demonstrated by the one-step bicyclization of 10-oxocitral to (racemic) nepetalactone in diastereomerically pure form.

7.
Chemistry ; 21(16): 6057-61, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25761259

RESUMEN

We report an efficient and practical protocol for the Cr/Ni-catalyzed vinylation of aldehydes, based on the use of Mn/Cr alloy (ca. 10 % Cr) and TMSCl. No additional Cr salts need to be added. In the presence of NiCl2 (0.3 mol %) and a bis(ketimino)-2,2'-bipyridine as N4 -chelating ligand (1 mol %), the vinylations proceed smoothly at room temperature. The presence of catalytic amounts of MeOH and LiOAc as additives was found to further promote the efficiency of the catalytic system, even in the absence of the ligand. Detailed reaction monitoring revealed that LiOAc accelerates the product alcohol silylation, thus increasing the turnover rate.

8.
J Am Chem Soc ; 134(27): 11196-205, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22631871

RESUMEN

Aldol reactions with trifluoroacetophenones as acceptors yield chiral α-aryl, α-trifluoromethyl tertiary alcohols, valuable intermediates in organic synthesis. Of the various organocatalysts examined, Singh's catalyst [(2S)-N-[(1S)-1-hydroxydiphenylmethyl-3-methylbutyl]-2-pyrrolidinecarboxamide] was found to efficiently promote this organocatalytic transformation in a highly enantioselective manner. Detailed reaction monitoring ((19)F-NMR, HPLC) showed that, up to full conversion, the catalytic transformation proceeds under kinetic control and affords up to 95% ee in a time-independent manner. At longer reaction times, the catalyst effects racemization. For the product aldols, even weak acids (such as ammonium chloride) or protic solvents, can induce racemization, too. Thus, acid-free workup, at carefully chosen reaction time, is crucial for the isolation of the aldols in high (and stable) enantiomeric purity. As evidenced by (19)F-NMR, X-ray structural analysis, and independent synthesis of a stable intramolecular variant, Singh's catalyst reversibly forms a catalytically inactive ("parasitic") intermediate, namely a N,O-hemiacetal with trifluoroacetophenones. X-ray crystallography also allowed the determination of the product aldols' absolute configuration (S).


Asunto(s)
Acetofenonas/química , Aldehídos/química , Hidrocarburos Fluorados/síntesis química , Metanol/síntesis química , Acetona/síntesis química , Acetona/química , Acetofenonas/síntesis química , Aldehídos/síntesis química , Catálisis , Cristalografía por Rayos X , Hidrocarburos Fluorados/química , Espectroscopía de Resonancia Magnética , Metanol/química , Modelos Moleculares , Estereoisomerismo
9.
Chemistry ; 17(17): 4765-73, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21425369

RESUMEN

The roles of nickel and chromium catalysts in the coupling reaction of vinyl halides and aldehydes, the so-called Nozaki-Hiyama-Kishi (NHK) reaction, have been studied by UV/Vis spectroscopy, electrochemical, and spectroelectrochemical methods. Electrochemical studies revealed that nickel plays the central role in activating the vinyl halide by reductive cleavage, to form a rapidly decomposing vinyl-Ni species. The latter can, however, be stabilized in the presence of the Cr complex. The redox behavior of the Ni complexes in the presence of vinyl halide demonstrated that the vinyl halide activation results from interaction with a one-electron reduced nickel species [formally Ni(I) ], not necessarily with a Ni(0) species. It was furthermore shown by UV/Vis spectroscopy and spectroelectrochemical methods that low-valent nickel [Ni(0) ] results from the interaction of the Ni(II) catalyst with CrCl(2) .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...