Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood Adv ; 5(23): 4949-4962, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34492681

RESUMEN

RUNX1 is essential for the generation of hematopoietic stem cells (HSCs). Runx1-null mouse embryos lack definitive hematopoiesis and die in mid-gestation. However, although zebrafish embryos with a runx1 W84X mutation have defects in early definitive hematopoiesis, some runx1W84X/W84X embryos can develop to fertile adults with blood cells of multilineages, raising the possibility that HSCs can emerge without RUNX1. Here, using 3 new zebrafish runx1-/- lines, we uncovered the compensatory mechanism for runx1-independent hematopoiesis. We show that, in the absence of a functional runx1, a cd41-green fluorescent protein (GFP)+ population of hematopoietic precursors still emerge from the hemogenic endothelium and can colonize the hematopoietic tissues of the mutant embryos. Single-cell RNA sequencing of the cd41-GFP+ cells identified a set of runx1-/--specific signature genes during hematopoiesis. Significantly, gata2b, which normally acts upstream of runx1 for the generation of HSCs, was increased in the cd41-GFP+ cells in runx1-/- embryos. Interestingly, genetic inactivation of both gata2b and its paralog gata2a did not affect hematopoiesis. However, knocking out runx1 and any 3 of the 4 alleles of gata2a and gata2b abolished definitive hematopoiesis. Gata2 expression was also upregulated in hematopoietic cells in Runx1-/- mice, suggesting the compensatory mechanism is conserved. Our findings indicate that RUNX1 and GATA2 serve redundant roles for HSC production, acting as each other's safeguard.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Factor de Transcripción GATA2/metabolismo , Hemangioblastos , Proteínas de Pez Cebra/metabolismo , Animales , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Factor de Transcripción GATA2/genética , Hematopoyesis/genética , Células Madre Hematopoyéticas , Ratones , Pez Cebra , Proteínas de Pez Cebra/genética
2.
Hum Mol Genet ; 29(13): 2109-2123, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32186706

RESUMEN

Cobalamin C (cblC) deficiency, the most common inborn error of intracellular cobalamin metabolism, is caused by mutations in MMACHC, a gene responsible for the processing and intracellular trafficking of vitamin B12. This recessive disorder is characterized by a failure to metabolize cobalamin into adenosyl- and methylcobalamin, which results in the biochemical perturbations of methylmalonic acidemia, hyperhomocysteinemia and hypomethioninemia caused by the impaired activity of the downstream enzymes, methylmalonyl-CoA mutase and methionine synthase. Cobalamin C deficiency can be accompanied by a wide spectrum of clinical manifestations, including progressive blindness, and, in mice, manifests with very early embryonic lethality. Because zebrafish harbor a full complement of cobalamin metabolic enzymes, we used genome editing to study the loss of mmachc function and to develop the first viable animal model of cblC deficiency. mmachc mutants survived the embryonic period but perished in early juvenile life. The mutants displayed the metabolic and clinical features of cblC deficiency including methylmalonic acidemia, severe growth retardation and lethality. Morphologic and metabolic parameters improved when the mutants were raised in water supplemented with small molecules used to treat patients, including hydroxocobalamin, methylcobalamin, methionine and betaine. Furthermore, mmachc mutants bred to express rod and/or cone fluorescent reporters, manifested a retinopathy and thin optic nerves (ON). Expression analysis using whole eye mRNA revealed the dysregulation of genes involved in phototransduction and cholesterol metabolism. Zebrafish with mmachc deficiency recapitulate the several of the phenotypic and biochemical features of the human disorder, including ocular pathology, and show a response to established treatments.


Asunto(s)
Proteínas Portadoras/genética , Morfogénesis/genética , Deficiencia de Vitamina B 12/genética , Vitamina B 12/genética , Proteínas de Pez Cebra/genética , Animales , Homocistinuria/genética , Homocistinuria/patología , Humanos , Ratones , Mutación/genética , Nervio Óptico/crecimiento & desarrollo , Nervio Óptico/patología , Oxidorreductasas/genética , Retina/crecimiento & desarrollo , Retina/metabolismo , Vitamina B 12/análogos & derivados , Vitamina B 12/metabolismo , Deficiencia de Vitamina B 12/metabolismo , Deficiencia de Vitamina B 12/patología , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo
3.
Dis Model Mech ; 13(3)2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-31996359

RESUMEN

Niemann-Pick disease type C1 (NPC1) is a rare, fatal neurodegenerative disorder characterized by lysosomal accumulation of unesterified cholesterol and glycosphingolipids. These subcellular pathologies lead to phenotypes of hepatosplenomegaly, neurological degeneration and premature death. NPC1 is extremely heterogeneous in the timing of clinical presentation and is associated with a wide spectrum of causative NPC1 mutations. To study the genetic architecture of NPC1, we have generated a new NPC1 mouse model, Npc1em1PavNpc1em1Pav/em1Pav mutants showed notably reduced NPC1 protein compared to controls and displayed the pathological and biochemical hallmarks of NPC1. Interestingly, Npc1em1Pav/em1Pav mutants on a C57BL/6J genetic background showed more severe visceral pathology and a significantly shorter lifespan compared to Npc1em1Pav/em1Pav mutants on a BALB/cJ background, suggesting that strain-specific modifiers contribute to disease severity and survival. QTL analysis for lifespan of 202 backcross N2 mutants on a mixed C57BL/6J and BALB/cJ background detected significant linkage to markers on chromosomes 1 and 7. The discovery of these modifier regions demonstrates that mouse models are powerful tools for analyzing the genetics underlying rare human diseases, which can be used to improve understanding of the variability in NPC1 phenotypes and advance options for patient diagnosis and therapy.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Antecedentes Genéticos , Longevidad , Enfermedad de Niemann-Pick Tipo C/patología , Índice de Severidad de la Enfermedad , Alelos , Animales , Secuencia de Bases , Cromosomas de los Mamíferos/genética , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intracelular/genética , Lisosomas/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Mutantes , Degeneración Nerviosa/patología , Proteína Niemann-Pick C1 , Fenotipo , Sitios de Carácter Cuantitativo/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Supervivencia , Vísceras/patología , Pérdida de Peso
4.
PLoS Genet ; 14(12): e1007821, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30540754

RESUMEN

Fanconi Anemia (FA) is a genomic instability syndrome resulting in aplastic anemia, developmental abnormalities, and predisposition to hematological and other solid organ malignancies. Mutations in genes that encode proteins of the FA pathway fail to orchestrate the repair of DNA damage caused by DNA interstrand crosslinks. Zebrafish harbor homologs for nearly all known FA genes. We used multiplexed CRISPR/Cas9-mediated mutagenesis to generate loss-of-function mutants for 17 FA genes: fanca, fancb, fancc, fancd1/brca2, fancd2, fance, fancf, fancg, fanci, fancj/brip1, fancl, fancm, fancn/palb2, fanco/rad51c, fancp/slx4, fancq/ercc4, fanct/ube2t, and two genes encoding FA-associated proteins: faap100 and faap24. We selected two indel mutations predicted to cause premature truncations for all but two of the genes, and a total of 36 mutant lines were generated for 19 genes. Generating two independent mutant lines for each gene was important to validate their phenotypic consequences. RT-PCR from homozygous mutant fish confirmed the presence of transcripts with indels in all genes. Interestingly, 4 of the indel mutations led to aberrant splicing, which may produce a different protein than predicted from the genomic sequence. Analysis of RNA is thus critical in proper evaluation of the consequences of the mutations introduced in zebrafish genome. We used fluorescent reporter assay, and western blots to confirm loss-of-function for several mutants. Additionally, we developed a DEB treatment assay by evaluating morphological changes in embryos and confirmed that homozygous mutants from all the FA genes that could be tested (11/17), displayed hypersensitivity and thus were indeed null alleles. Our multiplexing strategy helped us to evaluate 11 multiple gene knockout combinations without additional breeding. Homozygous zebrafish for all 19 single and 11 multi-gene knockouts were adult viable, indicating FA genes in zebrafish are generally not essential for early development. None of the mutant fish displayed gross developmental abnormalities except for fancp-/- fish, which were significantly smaller in length than their wildtype clutch mates. Complete female-to-male sex reversal was observed in knockouts for 12/17 FA genes, while partial sex reversal was seen for the other five gene knockouts. All adult females were fertile, and among the adult males, all were fertile except for the fancd1 mutants and one of the fancj mutants. We report here generation and characterization of zebrafish knockout mutants for 17 FA disease-causing genes, providing an integral resource for understanding the pathophysiology associated with the disrupted FA pathway.


Asunto(s)
Anemia de Fanconi/genética , Pez Cebra/genética , Animales , Sistemas CRISPR-Cas , Daño del ADN , Anemia de Fanconi/fisiopatología , Femenino , Fertilidad/genética , Fertilidad/fisiología , Mutación del Sistema de Lectura , Técnicas de Inactivación de Genes , Humanos , Masculino , Fenotipo , Empalme del ARN/genética , Procesos de Determinación del Sexo/genética , Procesos de Determinación del Sexo/fisiología , Desarrollo Sexual/genética , Desarrollo Sexual/fisiología , Pez Cebra/crecimiento & desarrollo , Pez Cebra/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología
5.
G3 (Bethesda) ; 7(2): 719-722, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28040780

RESUMEN

Cpf1 has emerged as an alternative to the Cas9 RNA-guided nuclease. Here we show that gene targeting rates in mice using Cpf1 can meet, or even surpass, Cas9 targeting rates (approaching 100% targeting), but require higher concentrations of mRNA and guide. We also demonstrate that coinjecting two guides with close targeting sites can result in synergistic genomic cutting, even if one of the guides has minimal cutting activity.


Asunto(s)
Proteínas Bacterianas/genética , Endonucleasas/genética , Edición Génica/métodos , Marcación de Gen/métodos , ARN Guía de Kinetoplastida/genética , Acidaminococcus/enzimología , Acidaminococcus/genética , Animales , Sistemas CRISPR-Cas/genética , Ratones , ARN Mensajero/genética
6.
PLoS One ; 11(6): e0156072, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27258160

RESUMEN

The SLAM family receptors contribute to diverse aspects of lymphocyte biology and signal via the small adaptor molecule SAP. Mutations affecting SAP lead to X-linked lymphoproliferative syndrome Type 1, a severe immunodysregulation characterized by fulminant mononucleosis, dysgammaglobulinemia, and lymphoproliferation/lymphomas. Patients and mice having mutations affecting SAP also lack germinal centers due to a defect in T:B cell interactions and are devoid of invariant NKT (iNKT) cells. However, which and how SLAM family members contribute to these phenotypes remains uncertain. Three SLAM family members: SLAMF1, SLAMF5 and SLAMF6, are highly expressed on T follicular helper cells and germinal center B cells. SLAMF1 and SLAMF6 are also implicated in iNKT development. Although individual receptor knockout mice have limited iNKT and germinal center phenotypes compared to SAP knockout mice, the generation of multi-receptor knockout mice has been challenging, due to the genomic linkage of the genes encoding SLAM family members. Here, we used Cas9/CRISPR-based mutagenesis to generate mutations simultaneously in Slamf1, Slamf5 and Slamf6. Genetic disruption of all three receptors in triple-knockout mice (TKO) did not grossly affect conventional T or B cell development and led to mild defects in germinal center formation post-immunization. However, the TKO worsened defects in iNKT cells development seen in SLAMF6 single gene-targeted mice, supporting data on positive signaling and potential redundancy between these receptors.


Asunto(s)
Centro Germinal/metabolismo , Células T Asesinas Naturales/metabolismo , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética , Animales , Linfocitos B/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Activación de Linfocitos/fisiología , Ratones , Ratones Noqueados , Transducción de Señal , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Linfocitos T/metabolismo
7.
Hum Mutat ; 37(5): 465-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26841305

RESUMEN

Fanconi anemia (FA) is a rare inherited disorder caused by pathogenic variants in one of 19 FANC genes. FA patients display congenital abnormalities, and develop bone marrow failure, and cancer susceptibility. We identified homozygous mutations in four FA patients and, in each case, only one parent carried the obligate mutant allele. FANCA and FANCP/SLX4 genes, both located on chromosome 16, were the affected recessive FA genes in three and one family respectively. Genotyping with short tandem repeat markers and SNP arrays revealed uniparental disomy (UPD) of the entire mutation-carrying chromosome 16 in all four patients. One FANCA patient had paternal UPD, whereas FA in the other three patients resulted from maternal UPD. These are the first reported cases of UPD as a cause of FA. UPD indicates a reduced risk of having another child with FA in the family and has implications in prenatal diagnosis.


Asunto(s)
Cromosomas Humanos Par 16/genética , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Anemia de Fanconi/genética , Recombinasas/genética , Disomía Uniparental/genética , Adulto , Preescolar , Femenino , Genes Recesivos , Homocigoto , Humanos , Masculino , Mutación , Linaje , Polimorfismo de Nucleótido Simple , Adulto Joven
8.
Genome Res ; 25(7): 1030-42, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26048245

RESUMEN

The use of CRISPR/Cas9 as a genome-editing tool in various model organisms has radically changed targeted mutagenesis. Here, we present a high-throughput targeted mutagenesis pipeline using CRISPR/Cas9 technology in zebrafish that will make possible both saturation mutagenesis of the genome and large-scale phenotyping efforts. We describe a cloning-free single-guide RNA (sgRNA) synthesis, coupled with streamlined mutant identification methods utilizing fluorescent PCR and multiplexed, high-throughput sequencing. We report germline transmission data from 162 loci targeting 83 genes in the zebrafish genome, in which we obtained a 99% success rate for generating mutations and an average germline transmission rate of 28%. We verified 678 unique alleles from 58 genes by high-throughput sequencing. We demonstrate that our method can be used for efficient multiplexed gene targeting. We also demonstrate that phenotyping can be done in the F1 generation by inbreeding two injected founder fish, significantly reducing animal husbandry and time. This study compares germline transmission data from CRISPR/Cas9 with those of TALENs and ZFNs and shows that efficiency of CRISPR/Cas9 is sixfold more efficient than other techniques. We show that the majority of published "rules" for efficient sgRNA design do not effectively predict germline transmission rates in zebrafish, with the exception of a GG or GA dinucleotide genomic match at the 5' end of the sgRNA. Finally, we show that predicted off-target mutagenesis is of low concern for in vivo genetic studies.


Asunto(s)
Sistemas CRISPR-Cas , Marcación de Gen , Ensayos Analíticos de Alto Rendimiento , Fenotipo , Alelos , Animales , Técnicas de Inactivación de Genes , Marcación de Gen/métodos , Estudio de Asociación del Genoma Completo , Genómica , Células Germinativas/inmunología , Humanos , Mutagénesis , Sitios de Carácter Cuantitativo , ARN Guía de Kinetoplastida/genética , Eliminación de Secuencia , Pez Cebra
9.
Gastroenterology ; 149(1): 67-78, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25865046

RESUMEN

BACKGROUND & AIMS: Small intestinal carcinoids are rare and difficult to diagnose and patients often present with advanced incurable disease. Although the disease occurs sporadically, there have been reports of family clusters. Hereditary small intestinal carcinoid has not been recognized and genetic factors have not been identified. We performed a genetic analysis of families with small intestinal carcinoids to establish a hereditary basis and find genes that might cause this cancer. METHODS: We performed a prospective study of 33 families with at least 2 cases of small intestinal carcinoids. Affected members were characterized clinically and asymptomatic relatives were screened and underwent exploratory laparotomy for suspected tumors. Disease-associated mutations were sought using linkage analysis, whole-exome sequencing, and copy number analyses of germline and tumor DNA collected from members of a single large family. We assessed expression of mutant protein, protein activity, and regulation of apoptosis and senescence in lymphoblasts derived from the cases. RESULTS: Familial and sporadic carcinoids are clinically indistinguishable except for the multiple synchronous primary tumors observed in most familial cases. Nearly 34% of asymptomatic relatives older than age 50 were found to have occult tumors; the tumors were cleared surgically from 87% of these individuals (20 of 23). Linkage analysis and whole-exome sequencing identified a germline 4-bp deletion in the gene inositol polyphosphate multikinase (IPMK), which truncates the protein. This mutation was detected in all 11 individuals with small intestinal carcinoids and in 17 of 35 family members whose carcinoid status was unknown. Mutant IPMK had reduced kinase activity and nuclear localization, compared with the full-length protein. This reduced activation of p53 and increased cell survival. CONCLUSIONS: We found that small intestinal carcinoids can occur as an inherited autosomal-dominant disease. The familial form is characterized by multiple synchronous primary tumors, which might account for 22%-35% of cases previously considered sporadic. Relatives of patients with familial carcinoids should be screened to detect curable early stage disease. IPMK haploinsufficiency promotes carcinoid tumorigenesis.


Asunto(s)
Tumor Carcinoide/genética , Mutación de Línea Germinal , Neoplasias Intestinales/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Tumor Carcinoide/diagnóstico , Tumor Carcinoide/patología , Familia , Femenino , Humanos , Neoplasias Intestinales/diagnóstico , Neoplasias Intestinales/patología , Laparotomía , Masculino , Persona de Mediana Edad , Linaje , Estudios Prospectivos , Adulto Joven
10.
Eur J Hum Genet ; 21(4): 437-43, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22948022

RESUMEN

Prostate cancer (PrCa) is the most common male cancer in developed countries and the second most common cause of cancer death after lung cancer. We recently reported a genome-wide linkage scan in 69 Finnish hereditary PrCa (HPC) families, which replicated the HPC9 locus on 17q21-q22 and identified a locus on 2q37. The aim of this study was to identify and to detect other loci linked to HPC. Here we used ordered subset analysis (OSA), conditioned on nonparametric linkage to these loci to detect other loci linked to HPC in subsets of families, but not the overall sample. We analyzed the families based on their evidence for linkage to chromosome 2, chromosome 17 and a maximum score using the strongest evidence of linkage from either of the two loci. Significant linkage to a 5-cM linkage interval with a peak OSA nonparametric allele-sharing LOD score of 4.876 on Xq26.3-q27 (ΔLOD=3.193, empirical P=0.009) was observed in a subset of 41 families weakly linked to 2q37, overlapping the HPCX1 locus. Two peaks that were novel to the analysis combining linkage evidence from both primary loci were identified; 18q12.1-q12.2 (OSA LOD=2.541, ΔLOD=1.651, P=0.03) and 22q11.1-q11.21 (OSA LOD=2.395, ΔLOD=2.36, P=0.006), which is close to HPC6. Using OSA allows us to find additional loci linked to HPC in subsets of families, and underlines the complex genetic heterogeneity of HPC even in highly aggregated families.


Asunto(s)
Heterogeneidad Genética , Ligamiento Genético , Neoplasias de la Próstata/genética , Cromosomas Humanos Par 17/genética , Cromosomas Humanos Par 2/genética , Femenino , Sitios Genéticos , Humanos , Masculino , Linaje
11.
Eur J Med Genet ; 55(10): 510-4, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22750566

RESUMEN

We have applied a GWAS to 40 consanguineous families segregating cases of non-syndromic cleft lip with or without cleft palate (NS CL/P) (a total of 160 affected and unaffected individuals) in order to trace potential recessive loci that confer susceptibility to this common facial malformation. Pedigree-based association test (PBAT) analyses reported nominal evidence of association and linkage over SNP markers located at 11q25 (rs4937877, P = 2.7 × 10(-6)), 19p12 (rs4324267, P = 1.6 × 10(-5)), 5q14.1 (rs4588572, P-value = 3.36 × 10(-5)), and 15q21.1 (rs4774497, P = 1.08 × 10(-4)). Using the Versatile Gene-Based Association Study to complement the PBAT results, we found clusters of markers located at chromosomes 19p12, 11q25, and 8p23.2 overcome the threshold for GWAS significance (P < 1 × 10(-7)). From this study, new recessive loci implicated in NS CL/P include: B3GAT1, GLB1L2, ZNF431, ZNF714, and CSMD1, even though the functional association with the genesis of NS CL/P remains to be elucidated. These results emphasize the importance of using homogeneous populations, phenotypes, and family structures for GWAS combined with gene-based association analyses, and should encourage. other researchers to evaluate these genes on independent patient samples affected by NS CL/P.


Asunto(s)
Labio Leporino/genética , Fisura del Paladar/genética , Genes Recesivos , Encéfalo/anomalías , Estudios de Casos y Controles , Labio Leporino/epidemiología , Fisura del Paladar/epidemiología , Proteínas de Unión al ADN/genética , Femenino , Marcadores Genéticos , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Glucuronosiltransferasa/genética , Glicósido Hidrolasas/genética , Humanos , Masculino , Proteínas de la Membrana/genética , Linaje , Factores de Transcripción/genética , Proteínas Supresoras de Tumor
12.
Mol Genet Metab ; 105(3): 382-9, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22264778

RESUMEN

Whole genome sequence data for small pedigrees has been shown to provide sufficient information to resolve detailed haplotypes in small pedigrees. Using such information, recombinations can be mapped onto chromosomes, compared with the segregation of a disease of interest and used to filter genome sequence variants. We now show that relatively inexpensive SNP array data from small pedigrees can be used in a similar manner to provide a means of identifying regions of interest in exome sequencing projects. We demonstrate that in those situations where one can assume complete penetrance and parental DNA is available, SNP recombination mapping using Boolean logic identifies chromosomal regions identical to those detected by multipoint linkage using microsatellites but with much less computation. We further show that this approach is successful because the probability of a double crossover between informative SNP loci is negligible. Our observations provide a rationale for using SNP arrays and recombination mapping as a rapid and cost-effective means of incorporating chromosome segregation information into exome sequencing projects intended for disease-gene identification.


Asunto(s)
Mapeo Cromosómico/métodos , Exoma/genética , Polimorfismo de Nucleótido Simple , Recombinación Genética , Secuencia de Bases , ADN/análisis , Femenino , Genotipo , Humanos , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos , Linaje , Análisis de Secuencia de ADN
13.
Int J Cancer ; 129(10): 2400-7, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21207418

RESUMEN

Genome-wide linkage studies have been used to localize rare and highly penetrant prostate cancer (PRCA) susceptibility genes. Linkage studies performed in different ethnic backgrounds and populations have been somewhat disparate, resulting in multiple, often irreproducible signals because of genetic heterogeneity and high sporadic background of the disease. Our first genome-wide linkage study and subsequent fine-mapping study of Finnish hereditary prostate cancer (HPC) families gave evidence of linkage to one region. Here, we conducted subsequent scans with microsatellites and SNPs in a total of 69 Finnish HPC families. GENEHUNTER-PLUS was used for parametric and nonparametric analyses. Our microsatellite genome-wide linkage study provided evidence of linkage to 17q12-q23, with a heterogeneity LOD (HLOD) score of 3.14 in a total of 54 of the 69 families. Genome-wide SNP analysis of 59 of the 69 families gave a highest HLOD score of 3.40 at 2q37.3 under a dominant high penetrance model. Analyzing all 69 families by combining microsatellite and SNP maps also yielded HLOD scores of > 3.3 in two regions (2q37.3 and 17q12-q21.3). These significant linkage peaks on chromosome 2 and 17 confirm previous linkage evidence of a locus on 17q from other populations and provide a basis for continued research into genetic factors involved in PRCA. Fine-mapping analysis of these regions is ongoing and candidate genes at linked loci are currently under analysis.


Asunto(s)
Cromosomas Humanos Par 17 , Cromosomas Humanos Par 2 , Ligamiento Genético , Neoplasias de la Próstata/genética , Mapeo Cromosómico , Finlandia , Predisposición Genética a la Enfermedad , Humanos , Masculino , Repeticiones de Microsatélite
14.
Mol Cancer Res ; 7(1): 41-54, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19147536

RESUMEN

We report that 10% of melanoma tumors and cell lines harbor mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. These novel mutations include three truncating mutations and 20 missense mutations occurring at evolutionary conserved residues in FGFR2 as well as among all four FGFRs. The mutation spectrum is characteristic of those induced by UV radiation. Mapping of these mutations onto the known crystal structures of FGFR2 followed by in vitro and in vivo studies show that these mutations result in receptor loss of function through several distinct mechanisms, including loss of ligand binding affinity, impaired receptor dimerization, destabilization of the extracellular domains, and reduced kinase activity. To our knowledge, this is the first demonstration of loss-of-function mutations in a class IV receptor tyrosine kinase in cancer. Taken into account with our recent discovery of activating FGFR2 mutations in endometrial cancer, we suggest that FGFR2 may join the list of genes that play context-dependent opposing roles in cancer.


Asunto(s)
Melanoma/genética , Mutación , Polimorfismo de Nucleótido Simple , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/química , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Neoplasias Cutáneas/genética , División Celular , Línea Celular Tumoral , Secuencia Conservada , Humanos , Melanoma/patología , Modelos Moleculares , Conformación Proteica , Neoplasias Cutáneas/patología
15.
Cancer Res ; 65(20): 9226-35, 2005 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16230383

RESUMEN

Sarcomas are a biologically complex group of tumors of mesenchymal origin. By using gene expression microarray analysis, we aimed to find clues into the cellular differentiation and oncogenic pathways active in these tumors as well as potential biomarkers and therapeutic targets. We examined 181 tumors representing 16 classes of human bone and soft tissue sarcomas on a 12,601-feature cDNA microarray. Remarkably, 2,766 probes differentially expressed across this sample set clearly delineated the various tumor classes. Several genes of potential biological and therapeutic interest were associated with each sarcoma type, including specific tyrosine kinases, transcription factors, and homeobox genes. We also identified subgroups of tumors within the liposarcomas, leiomyosarcomas, and malignant fibrous histiocytomas. We found significant gene ontology correlates for each tumor group and identified similarity to normal tissues by Gene Set Enrichment Analysis. Mutation analysis done on 275 tumor samples revealed that the high expression of epidermal growth factor receptor (EGFR) in certain tumors was not associated with gene mutations. Finally, to further the investigation of human sarcoma biology, we have created an online, publicly available, searchable database housing the data from the gene expression profiles of these tumors (http://watson.nhgri.nih.gov/sarcoma), allowing the user to interactively explore this data set in depth.


Asunto(s)
Sarcoma/genética , Sarcoma/patología , Análisis por Conglomerados , Perfilación de la Expresión Génica , Genes Homeobox/genética , Histiocitoma Fibroso Maligno/genética , Histiocitoma Fibroso Maligno/metabolismo , Humanos , Leiomiosarcoma/genética , Leiomiosarcoma/metabolismo , Liposarcoma/genética , Liposarcoma/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Sarcoma/metabolismo , Transducción de Señal/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
16.
Oncogene ; 23(23): 4060-7, 2004 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-15048078

RESUMEN

We have used microarray gene expression profiling and machine learning to predict the presence of BRAF mutations in a panel of 61 melanoma cell lines. The BRAF gene was found to be mutated in 42 samples (69%) and intragenic mutations of the NRAS gene were detected in seven samples (11%). No cell line carried mutations of both genes. Using support vector machines, we have built a classifier that differentiates between melanoma cell lines based on BRAF mutation status. As few as 83 genes are able to discriminate between BRAF mutant and BRAF wild-type samples with clear separation observed using hierarchical clustering. Multidimensional scaling was used to visualize the relationship between a BRAF mutation signature and that of a generalized mitogen-activated protein kinase (MAPK) activation (either BRAF or NRAS mutation) in the context of the discriminating gene list. We observed that samples carrying NRAS mutations lie somewhere between those with or without BRAF mutations. These observations suggest that there are gene-specific mutation signals in addition to a common MAPK activation that result from the pleiotropic effects of either BRAF or NRAS on other signaling pathways, leading to measurably different transcriptional changes.


Asunto(s)
Melanoma/metabolismo , Mutación , Proteínas Proto-Oncogénicas c-raf/genética , Sustitución de Aminoácidos , Humanos , Melanoma/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Proto-Oncogénicas B-raf , Proteínas ras/genética
17.
Nat Genet ; 33(1): 19-20, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12447372

RESUMEN

To evaluate the timing of mutations in BRAF (v-raf murine sarcoma viral oncogene homolog B1) during melanocytic neoplasia, we carried out mutation analysis on microdissected melanoma and nevi samples. We observed mutations resulting in the V599E amino-acid substitution in 41 of 60 (68%) melanoma metastases, 4 of 5 (80%) primary melanomas and, unexpectedly, in 63 of 77 (82%) nevi. These data suggest that mutational activation of the RAS/RAF/MAPK pathway in nevi is a critical step in the initiation of melanocytic neoplasia but alone is insufficient for melanoma tumorigenesis.


Asunto(s)
Melanoma/genética , Mutación Missense/genética , Nevo/genética , Proteínas Oncogénicas v-raf/genética , Transformación Celular Neoplásica/genética , Análisis Mutacional de ADN , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Melanoma/patología , Nevo/patología , Proteínas Oncogénicas v-raf/química , Reacción en Cadena de la Polimerasa , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...