Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38370814

RESUMEN

The crypt-villus structure of the small intestine serves as an essential protective barrier, with its integrity monitored by the gut's sensory system. Enterochromaffin (EC) cells, which are rare sensory epithelial cells that release serotonin (5-HT), surveil the mucosal environment and signal both within and outside the gut. However, it remains unclear whether EC cells in intestinal crypts and villi respond to different stimuli and elicit distinct responses. In this study, we introduce a new reporter mouse model to observe the release and propagation of serotonin in live intestines. Using this system, we show that crypt EC cells exhibit two modes of serotonin release: transient receptor potential A1 (TRPA1)-dependent tonic serotonin release that controls basal ionic secretion, and irritant-evoked serotonin release that activates gut sensory neurons. Furthermore, we find that a thick protective mucus layer prevents TRPA1 receptors on crypt EC cells from responding to luminal irritants such as reactive electrophiles; if this mucus layer is compromised, then crypt EC cells become susceptible to activation by luminal irritants. On the other hand, villus EC cells detect oxidative stress through TRPM2 channels and co-release serotonin and ATP to activate nearby gut sensory fibers. Our work highlights the physiological importance of intestinal architecture and differential TRP channel expression in sensing noxious stimuli that elicit nausea and/or pain sensations in the gut.

2.
J Comp Neurol ; 532(2): e25546, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37837642

RESUMEN

The distal colon and rectum (colorectum) are innervated by spinal and vagal afferent pathways. The central circuits into which vagal and spinal afferents relay colorectal nociceptive information remain to be comparatively assessed. To address this, regional colorectal retrograde tracing and colorectal distension (CRD)-evoked neuronal activation were used to compare the circuits within the dorsal vagal complex (DVC) and dorsal horn (thoracolumbar [TL] and lumbosacral [LS] spinal levels) into which vagal and spinal colorectal afferents project. Vagal afferent projections were observed in the nucleus tractus solitarius (NTS), area postrema (AP), and dorsal motor nucleus of the vagus (DMV), labeled from the rostral colorectum. In the NTS, projections were opposed to catecholamine and pontine parabrachial nuclei (PbN)-projecting neurons. Spinal afferent projections were labeled from rostral through to caudal aspects of the colorectum. In the dorsal horn, the number of neurons activated by CRD was linked to pressure intensity, unlike in the DVC. In the NTS, 13% ± 0.6% of CRD-activated neurons projected to the PbN. In the dorsal horn, at the TL spinal level, afferent input was associated with PbN-projecting neurons in lamina I (LI), with 63% ± 3.15% of CRD-activated neurons in LI projecting to the PbN. On the other hand, at the LS spinal level, only 18% ± 0.6% of CRD-activated neurons in LI projected to the PbN. The collective data identify differences in the central neuroanatomy that support the disparate roles of vagal and spinal afferent signaling in the facilitation and modulation of colorectal nociceptive responses.


Asunto(s)
Neoplasias Colorrectales , Nervio Vago , Ratones , Animales , Vías Aferentes/fisiología , Neuronas , Asta Dorsal de la Médula Espinal , Neoplasias Colorrectales/metabolismo , Médula Espinal/metabolismo , Neuronas Aferentes/fisiología
3.
HIV Res Clin Pract ; 24(1): 2267825, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37837376

RESUMEN

BACKGROUND: A feature of HIV cure trials is the need to interrupt treatment to test the efficacy of experimental interventions-a process known as analytical treatment interruptions (ATIs). OBJECTIVES: We report the experiences of participants after they completed an extended ATI. METHODS: From April to November 2022, we conducted post-ATI in-depth interviews with BEAT2 clinical trial (NCT03588715) participants who stopped ART while receiving an immunotherapy regimen. We used conventional content analysis to code the data. RESULTS: We conducted interviews with 11 Black/African American and three White/Caucasian participants (11 males, two females, and one transgender woman). The mean ATI was 38 weeks. Participants noted several significant experiences surrounding the interventions' side effects, ATI, and returning to medication. Some participants had positive experiences with their ATI. Other participants were nervous during the ATI. Rising viral loads led some to feel a sense of failure. Although trial experiences were heterogeneous, participants unanimously had positive interactions with the clinical trial staff which facilitated their retention in the trial. Participants shared their experiences with the trial, including changes in expectations, experiences with experimental interventions and procedures, compensation as a measure of respect, effort, transportation, and effects of COVID-19 during the trial. Based on these results, we provide considerations for the conduct of future HIV cure-directed clinical trials involving ATIs. CONCLUSIONS: Managing expectations, focusing on participants' contributions, and providing support to reduce feelings of having failed the research team and/or the HIV community following viral rebound should be part of HIV cure trial design. Discussing the mental health impact of rebound during consent, distinct from risk, is needed. Continued efforts to understand how people with HIV experience ATIs will improve future designs of HIV cure clinical trials.


Asunto(s)
COVID-19 , Infecciones por VIH , Femenino , Humanos , Masculino , Infecciones por VIH/tratamiento farmacológico , Inmunoterapia , Philadelphia , Estados Unidos , Carga Viral , Ensayos Clínicos como Asunto
4.
J Neurochem ; 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37165846

RESUMEN

Chronic pelvic pain (CPP) is the most debilitating symptom of gynaecological disorders such as endometriosis. However, it remains unclear how sensory neurons from pelvic organs affected by endometriosis, such as the female reproductive tract, detect and transmit nociceptive events and how these signals are processed within the central nervous system (CNS). Using a previously characterized mouse model of endometriosis, we investigated whether the increased pain sensitivity occurring in endometriosis could be attributed to (i) changes in mechanosensory properties of sensory afferents innervating the reproductive tract, (ii) alterations in sensory input from reproductive organs to the spinal cord or (iii) neuroinflammation and sensitization of spinal neural circuits. Mechanosensitivity of vagina-innervating primary afferents was examined using an ex vivo single-unit extracellular recording preparation. Nociceptive signalling from the vagina to the spinal cord was quantified by phosphorylated MAP kinase ERK1/2 immunoreactivity. Immunohistochemistry was used to determine glial and neuronal circuit alterations within the spinal cord. We found that sensory afferents innervating the rostral, but not caudal portions of the mouse vagina, developed mechanical hypersensitivity in endometriosis. Nociceptive signalling from the vagina to the spinal cord was significantly enhanced in mice with endometriosis. Moreover, mice with endometriosis developed microgliosis, astrogliosis and enhanced substance P neurokinin-1 receptor immunoreactivity within the spinal cord, suggesting the development of neuroinflammation and sensitization of spinal circuitry in endometriosis. These results demonstrate endometriosis-induced neuroplasticity occurring at both peripheral and central sites of sensory afferent pathways. These findings may help to explain the altered sensitivity to pain in endometriosis and provide a novel platform for targeted pain relief treatments for this debilitating disorder.

5.
Pain ; 164(5): 1012-1026, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36279179

RESUMEN

ABSTRACT: The bladder wall is innervated by a complex network of afferent nerves that detect bladder stretch during filling. Sensory signals, generated in response to distension, are relayed to the spinal cord and brain to evoke physiological and painful sensations and regulate urine storage and voiding. Hyperexcitability of these sensory pathways is a key component in the development of chronic bladder hypersensitivity disorders including interstitial cystitis/bladder pain syndrome and overactive bladder syndrome. Despite this, the full array of ion channels that regulate bladder afferent responses to mechanical stimuli have yet to be determined. Here, we investigated the role of low-voltage-activated T-type calcium (Ca V 3) channels in regulating bladder afferent responses to distension. Using single-cell reverse-transcription polymerase chain reaction and immunofluorescence, we revealed ubiquitous expression of Ca V 3.2, but not Ca V 3.1 or Ca V 3.3, in individual bladder-innervating dorsal root ganglia neurons. Pharmacological inhibition of Ca V 3.2 with TTA-A2 and ABT-639, selective blockers of T-type calcium channels, dose-dependently attenuated ex-vivo bladder afferent responses to distension in the absence of changes to muscle compliance. Further evaluation revealed that Ca V 3.2 blockers significantly inhibited both low- and high-threshold afferents, decreasing peak responses to distension, and delayed activation thresholds, thereby attenuating bladder afferent responses to both physiological and noxious distension. Nocifensive visceromotor responses to noxious bladder distension in vivo were also significantly reduced by inhibition of Ca V 3 with TTA-A2. Together, these data provide evidence of a major role for Ca V 3.2 in regulating bladder afferent responses to bladder distension and nociceptive signalling to the spinal cord.


Asunto(s)
Canales de Calcio Tipo T , Cistitis Intersticial , Humanos , Vejiga Urinaria/inervación , Neuronas Aferentes/fisiología , Canales de Calcio Tipo T/metabolismo , Vías Aferentes/fisiología , Cistitis Intersticial/metabolismo , Ganglios Espinales/metabolismo
6.
Commun Biol ; 5(1): 915, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104503

RESUMEN

Our understanding of how abdominal organs (like the gut) communicate with the brain, via sensory nerves, has been limited by a lack of techniques to selectively activate or inhibit populations of spinal primary afferent neurons within dorsal root ganglia (DRG), of live animals. We report a survival surgery technique in mice, where select DRG are surgically removed (unilaterally or bilaterally), without interfering with other sensory or motor nerves. Using this approach, pain responses evoked by rectal distension were abolished by bilateral lumbosacral L5-S1 DRG removal, but not thoracolumbar T13-L1 DRG removal. However, animals lacking T13-L1 or L5-S1 DRG both showed reduced pain sensitivity to distal colonic distension. Removal of DRG led to selective loss of peripheral CGRP-expressing spinal afferent axons innervating visceral organs, arising from discrete spinal segments. This method thus allows spinal segment-specific determination of sensory pathway functions in conscious, free-to-move animals, without genetic modification.


Asunto(s)
Encéfalo , Ganglios Espinales , Animales , Colon , Ganglios Espinales/metabolismo , Ratones , Dolor
7.
Sci Rep ; 12(1): 9920, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705684

RESUMEN

The mechanisms underlying chronic bladder conditions such as interstitial cystitis/bladder pain syndrome (IC/BPS) and overactive bladder syndrome (OAB) are incompletely understood. However, targeting specific receptors mediating neuronal sensitivity to specific stimuli is an emerging treatment strategy. Recently, irritant-sensing receptors including the bile acid receptor TGR5, have been identified within the viscera and are thought to play a key role in neuronal hypersensitivity. Here, in mice, we identify mRNA expression of TGR5 (Gpbar1) in all layers of the bladder as well as in the lumbosacral dorsal root ganglia (DRG) and in isolated bladder-innervating DRG neurons. In bladder-innervating DRG neurons Gpbar1 mRNA was 100% co-expressed with Trpv1 and 30% co-expressed with Trpa1. In vitro live-cell calcium imaging of bladder-innervating DRG neurons showed direct activation of a sub-population of bladder-innervating DRG neurons with the synthetic TGR5 agonist CCDC, which was diminished in Trpv1-/- but not Trpa1-/- DRG neurons. CCDC also activated a small percentage of non-neuronal cells. Using an ex vivo mouse bladder afferent recording preparation we show intravesical application of endogenous (5α-pregnan-3ß-ol-20-one sulphate, Pg5α) and synthetic (CCDC) TGR5 agonists enhanced afferent mechanosensitivity to bladder distension. Correspondingly, in vivo intravesical administration of CCDC increased the number of spinal dorsal horn neurons that were activated by bladder distension. The enhanced mechanosensitivity induced by CCDC ex vivo and in vivo was absent using Gpbar1-/- mice. Together, these results indicate a role for the TGR5 receptor in mediating bladder afferent hypersensitivity to distension and thus may be important to the symptoms associated with IC/BPS and OAB.


Asunto(s)
Cistitis Intersticial , Retención Urinaria , Animales , Cistitis Intersticial/metabolismo , Ganglios Espinales/metabolismo , Ratones , Neuronas Aferentes/fisiología , ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Vejiga Urinaria/metabolismo
8.
Pain ; 163(8): 1622-1635, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35050959

RESUMEN

ABSTRACT: Endometriosis is a chronic and debilitating condition, commonly characterised by chronic pelvic pain (CPP) and infertility. Chronic pelvic pain can be experienced across multiple pelvic organs, with comorbidities commonly effecting the bowel, bladder, and vagina. Despite research efforts into endometriosis pathophysiology, little is known about how endometriosis induces CPP, and as such, therapeutic interventions are lacking. The aim of this study was to characterise a syngeneic mouse model of endometriosis that mimics naturally occurring retrograde menstruation, thought to precede endometriosis development in patients, and determine whether these mice exhibit signs of CPP and altered behaviour. We characterised the development of endometriosis over 10 weeks following uterine tissue inoculation, measured in vivo and ex vivo hypersensitivity to mechanical stimuli across multiple visceral organs, and assessed alterations in animal spontaneous behaviour. We confirmed that inoculated uterine horn tissue formed into endometriosis lesions throughout the peritoneal cavity, with significant growth by 8 to 10 weeks post inoculation. Additionally, we found that mice with fully developed endometriosis displayed hypersensitivity evoked by (1) vaginal distension, (2) colorectal distension, (3) bladder distension, and (4) cutaneous thermal stimulation, compared to their sham counterparts. Moreover, endometriosis mice displayed alterations in spontaneous behaviour indicative of (5) altered bladder function and (6) anxiety. This model creates a foundation for mechanistical studies into the diffuse CPP associated with endometriosis and the development of targeted therapeutic interventions to improve the quality of life of women with endometriosis.


Asunto(s)
Dolor Crónico , Endometriosis , Animales , Dolor Crónico/complicaciones , Modelos Animales de Enfermedad , Endometriosis/complicaciones , Femenino , Humanos , Ratones , Dolor Pélvico/diagnóstico , Calidad de Vida
9.
Pain ; 163(1): e72-e86, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33863856

RESUMEN

ABSTRACT: Abdominal pain is a key symptom of inflammatory bowel disease and irritable bowel syndrome, for which there are inadequate therapeutic options. We tested whether olorinab-a highly selective, full agonist of the cannabinoid receptor 2 (CB2)-reduced visceral hypersensitivity in models of colitis and chronic visceral hypersensitivity (CVH). In rodents, colitis was induced by intrarectal administration of nitrobenzene sulfonic acid derivatives. Control or colitis animals were administered vehicle or olorinab (3 or 30 mg/kg) twice daily by oral gavage for 5 days, starting 1 day before colitis induction. Chronic visceral hypersensitivity mice were administered olorinab (1, 3, 10, or 30 mg/kg) twice daily by oral gavage for 5 days, starting 24 days after colitis induction. Visceral mechanosensitivity was assessed in vivo by quantifying visceromotor responses (VMRs) to colorectal distension. Ex vivo afferent recordings determined colonic nociceptor firing evoked by mechanical stimuli. Colitis and CVH animals displayed significantly elevated VMRs to colorectal distension and colonic nociceptor hypersensitivity. Olorinab treatment significantly reduced VMRs to control levels in colitis and CVH animals. In addition, olorinab reduced nociceptor hypersensitivity in colitis and CVH states in a concentration- and CB2-dependent manner. By contrast, olorinab did not alter VMRs nor nociceptor responsiveness in control animals. Cannabinoid receptor 2 mRNA was detected in colonic tissue, particularly within epithelial cells, and dorsal root ganglia, with no significant differences between healthy, colitis, and CVH states. These results demonstrate that olorinab reduces visceral hypersensitivity through CB2 agonism in animal models, suggesting that olorinab may provide a novel therapy for inflammatory bowel disease- and irritable bowel syndrome-associated abdominal pain.


Asunto(s)
Colitis , Síndrome del Colon Irritable , Dolor Visceral , Animales , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/tratamiento farmacológico , Colon , Modelos Animales de Enfermedad , Síndrome del Colon Irritable/complicaciones , Síndrome del Colon Irritable/tratamiento farmacológico , Ratones , Receptores de Cannabinoides , Roedores , Dolor Visceral/tratamiento farmacológico , Dolor Visceral/etiología
10.
Trends Pharmacol Sci ; 43(2): 110-122, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34865885

RESUMEN

Irritable bowel syndrome (IBS) is a chronic gastrointestinal disorder characterized by abdominal pain and altered bowel habit that affects ~11% of the global population. Over the past decade, preclinical and clinical studies have revealed a variety of novel mechanisms relating to the visceral analgesic effects of guanylate cyclase-C (GC-C) agonists. Here we discuss the mechanisms by which GC-C agonists target the GC-C/cyclic guanosine-3',5'-monophosphate (cGMP) pathway, resulting in visceral analgesia as well as clinically relevant relief of abdominal pain and other sensations in IBS patients. Due to the preponderance of evidence we focus on linaclotide, a 14-amino acid GC-C agonist with very low oral bioavailability that acts within the gut. Collectively, the weight of experimental and clinical evidence supports the concept that GC-C agonists act as peripherally acting visceral analgesics.


Asunto(s)
Dolor Crónico , Agonistas de la Guanilato Ciclasa C , Síndrome del Colon Irritable , Dolor Visceral , Dolor Abdominal/tratamiento farmacológico , Dolor Crónico/tratamiento farmacológico , Guanilato Ciclasa/metabolismo , Guanilato Ciclasa/uso terapéutico , Agonistas de la Guanilato Ciclasa C/farmacología , Agonistas de la Guanilato Ciclasa C/uso terapéutico , Humanos , Síndrome del Colon Irritable/tratamiento farmacológico , Dolor Visceral/tratamiento farmacológico
11.
Am J Physiol Gastrointest Liver Physiol ; 320(6): G1131-G1141, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33949199

RESUMEN

Chronic abdominal pain is a common clinical condition experienced by patients with irritable bowel syndrome (IBS). A general lack of suitable treatment options for the management of visceral pain is the major contributing factor to the debilitating nature of the disease. Understanding the underlying causes of chronic visceral pain is pivotal to identifying new effective therapies for IBS. This review provides the current evidence, demonstrating that mediators and receptors that induce itch in the skin also act as "gut irritants" in the gastrointestinal tract. Activation of these receptors triggers specific changes in the neuronal excitability of sensory pathways responsible for the transmission of nociceptive information from the periphery to the central nervous system leading to visceral hypersensitivity and visceral pain. Accumulating evidence points to significant roles of irritant mediators and their receptors in visceral hypersensitivity and thus constitutes potential targets for the development of more effective therapeutic options for IBS.


Asunto(s)
Colon/metabolismo , Hiperalgesia/metabolismo , Síndrome del Colon Irritable/metabolismo , Dolor Visceral/metabolismo , Histamina/metabolismo , Humanos , Mastocitos/metabolismo
12.
FASEB J ; 35(4): e21430, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33749885

RESUMEN

Endometriosis is a painful inflammatory disorder affecting ~10% of women of reproductive age. Although chronic pelvic pain (CPP) remains the main symptom of endometriosis patients, adequate treatments for CPP are lacking. Animal models that recapitulate the features and symptoms experienced by women with endometriosis are essential for investigating the etiology of endometriosis, as well as developing new treatments. In this study, we used an autologous mouse model of endometriosis to examine a combination of disease features and symptoms including: a 10 week time course of endometriotic lesion development; the chronic inflammatory environment and development of neuroangiogenesis within lesions; sensory hypersensitivity and altered pain responses to vaginal, colon, bladder, and skin stimulation in conscious animals; and spontaneous animal behavior. We found significant increases in lesion size from week 6 posttransplant. Lesions displayed endometrial glands, stroma, and underwent neuroangiogenesis. Additionally, peritoneal fluid of mice with endometriosis contained known inflammatory mediators and angiogenic factors. Compared to Sham, mice with endometriosis displayed: enhanced sensitivity to pain evoked by (i) vaginal and (ii) colorectal distension, (iii) altered bladder function and increased sensitivity to cutaneous (iv) thermal and (v) mechanical stimuli. The development of endometriosis had no effect on spontaneous behavior. This study describes a comprehensive characterization of a mouse model of endometriosis, recapitulating the clinical features and symptoms experienced by women with endometriosis. Moreover, it delivers the groundwork to investigate the etiology of endometriosis and provides a platform for the development of therapeutical interventions to manage endometriosis-associated CPP.


Asunto(s)
Enfermedades del Colon/etiología , Endometriosis/patología , Enfermedades de la Piel/etiología , Enfermedades de la Vejiga Urinaria/etiología , Enfermedades Vaginales/etiología , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Femenino , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Actividad Motora , Dolor
13.
J Neurosci ; 41(17): 3900-3916, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33727332

RESUMEN

Understanding the sensory mechanisms innervating the bladder is paramount to developing efficacious treatments for chronic bladder hypersensitivity conditions. The contribution of Mas-gene-related G protein-coupled receptors (Mrgpr) to bladder signaling is currently unknown. Using male and female mice, we show with single-cell RT-PCR that subpopulations of DRG neurons innervating the mouse bladder express MrgprA3 (14%) and MrgprC11 (38%), either individually or in combination, with high levels of coexpression with Trpv1 (81%-89%). Calcium imaging studies demonstrated MrgprA3 and MrgprC11 agonists (chloroquine, BAM8-22, and neuropeptide FF) activated subpopulations of bladder-innervating DRG neurons, showing functional evidence of coexpression between MrgprA3, MrgprC11, and TRPV1. In ex vivo bladder-nerve preparations, chloroquine, BAM8-22, and neuropeptide FF all evoked mechanical hypersensitivity in subpopulations (20%-41%) of bladder afferents. These effects were absent in recordings from Mrgpr-clusterΔ-/- mice. In vitro whole-cell patch-clamp recordings showed that application of an MrgprA3/C11 agonist mixture induced neuronal hyperexcitability in 44% of bladder-innervating DRG neurons. Finally, in vivo instillation of an MrgprA3/C11 agonist mixture into the bladder of WT mice induced a significant activation of dorsal horn neurons within the lumbosacral spinal cord, as quantified by pERK immunoreactivity. This MrgprA3/C11 agonist-induced activation was particularly apparent within the superficial dorsal horn and the sacral parasympathetic nuclei of WT, but not Mrgpr-clusterΔ-/- mice. This study demonstrates, for the first time, functional expression of MrgprA3 and MrgprC11 in bladder afferents. Activation of these receptors triggers hypersensitivity to distension, a critically valuable factor for therapeutic target development.SIGNIFICANCE STATEMENT Determining how bladder afferents become sensitized is the first step in finding effective treatments for common urological disorders such as overactive bladder and interstitial cystitis/bladder pain syndrome. Here we show that two of the key receptors, MrgprA3 and MrgprC11, that mediate itch from the skin are also expressed on afferents innervating the bladder. Activation of these receptors results in sensitization of bladder afferents, resulting in sensory signals being sent into the spinal cord that prematurely indicate bladder fullness. Targeting bladder afferents expressing MrgprA3 or MrgprC11 and preventing their sensitization may provide a novel approach for treating overactive bladder and interstitial cystitis/bladder pain syndrome.


Asunto(s)
Neuronas Aferentes/fisiología , Receptores Acoplados a Proteínas G/fisiología , Vejiga Urinaria/inervación , Animales , Femenino , Ganglios Espinales/fisiología , Plexo Lumbosacro/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Placa-Clamp , Estimulación Física , Células del Asta Posterior/fisiología , Canales Catiónicos TRPV/fisiología
14.
Pain ; 162(1): 227-242, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32826751

RESUMEN

Dyspareunia, also known as vaginal hyperalgesia, is a prevalent and debilitating symptom of gynaecological disorders such as endometriosis and vulvodynia. Despite this, the sensory pathways transmitting nociceptive information from female reproductive organs remain poorly characterised. As such, the development of specific treatments for pain associated with dyspareunia is currently lacking. Here, we examined, for the first time, (1) the mechanosensory properties of pelvic afferent nerves innervating the mouse vagina; (2) the expression profile of voltage-gated sodium (NaV) channels within these afferents; and (3) how pharmacological modulation of these channels alters vaginal nociceptive signalling ex vivo, in vitro, and in vivo. We developed a novel afferent recording preparation and characterised responses of pelvic afferents innervating the mouse vagina to different mechanical stimuli. Single-cell reverse transcription-polymerase chain reaction determined mRNA expression of NaV channels within vagina-innervating dorsal root ganglia neurons. Vagina-innervating dorsal root ganglia neuroexcitability was measured using whole-cell patch-clamp electrophysiology. Nociception evoked by vaginal distension was assessed by dorsal horn neuron activation within the spinal cord and quantification of visceromotor responses. We found that pelvic afferents innervating the vagina are tuned to detect various mechanical stimuli, with NaV channels abundantly expressed within these neurons. Pharmacological modulation of NaV channels (with veratridine or tetrodotoxin) correspondingly alters the excitability and mechanosensitivity of vagina-innervating afferents, as well as dorsal horn neuron activation and visceromotor responses evoked by vaginal distension. This study identifies potential molecular targets that can be used to modulate vaginal nociceptive signalling and aid in the development of approaches to manage endometriosis and vulvodynia-related dyspareunia.


Asunto(s)
Nocicepción , Canales de Sodio Activados por Voltaje , Animales , Femenino , Ganglios Espinales , Ratones , Sodio , Bloqueadores de los Canales de Sodio/farmacología , Tetrodotoxina/farmacología
15.
Front Cell Infect Microbiol ; 11: 784972, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35118009

RESUMEN

INTRODUCTION: Improved understanding of vestibulodynia pathophysiology is required to develop appropriately targeted treatments. Established features include vulvovaginal hyperinnervation, increased nociceptive signalling and hypersensitivity. Emerging evidence indicates macrophage-neuron signalling contributes to chronic pain pathophysiology. Macrophages are broadly classified as M1 or M2, demonstrating pro-nociceptive or anti-nociceptive effects respectively. This study investigates the impact of clodronate liposomes, a macrophage depleting agent, on nociceptive signalling in a mouse model of vestibulodynia. METHODS: Microinjection of complete Freund's adjuvant (CFA) at the vaginal introitus induced mild chronic inflammation in C57Bl/6J mice. A subgroup was treated with the macrophage depleting agent clodronate. Control mice received saline. After 7 days, immunolabelling for PGP9.5, F4/80+CD11c+ and F4/80+CD206+ was used to compare innervation density and presence of M1 and M2 macrophages respectively in experimental groups. Nociceptive signalling evoked by vaginal distension was assessed using immunolabelling for phosphorylated MAP extracellular signal-related kinase (pERK) in spinal cord sections. Hyperalgesia was assessed by visceromotor response to graded vaginal distension. RESULTS: CFA led to increased vaginal innervation (p < 0.05), increased pERK-immunoreactive spinal cord dorsal horn neurons evoked by vaginal-distension (p < 0.01) and enhanced visceromotor responses compared control mice (p < 0.01). Clodronate did not reduce vaginal hyperinnervation but significantly reduced the abundance of M1 and M2 vaginal macrophages and restored vaginal nociceptive signalling and vaginal sensitivity to that of healthy control animals. CONCLUSIONS: We have developed a robust mouse model of vestibulodynia that demonstrates vaginal hyperinnervation, enhanced nociceptive signalling, hyperalgesia and allodynia. Macrophages contribute to hypersensitivity in this model. Macrophage-sensory neuron signalling pathways may present useful pathophysiological targets.


Asunto(s)
Vulvodinia , Animales , Ácido Clodrónico/uso terapéutico , Femenino , Adyuvante de Freund , Hiperalgesia/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Vulvodinia/tratamiento farmacológico
16.
Toxicol Appl Pharmacol ; 400: 115041, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32428593

RESUMEN

Respiratory ailments have plagued occupational and public health communities exposed to World Trade Center (WTC) dust since the September 11, 2001 attack on the Twin Towers in Lower Manhattan. We proposed that these ailments were proposed to be induced by inhalation exposure to WTC particulate matter (WTCPM), that was released during the collapse of the buildings and its subsequent resuspension during cleanup. We investigated this hypothesis using both an in vitro and an in vivo mouse intranasal (IN) exposure models to identify the inflammatory potential of WTCPM with specific emphasis on respiratory and endothelial tissue responses. The in vitro exposure studies found WTCPM exposure to be positively correlated with cytotoxicity and increased NO2- production in both BEAS-2B pulmonary epithelial cells and THP-1 macrophage cells. The in vivo C57BL/6 mouse studies found significant increases in inflammatory markers including increases in polymorphonuclear neutrophil (PMN) influx into nasal and bronchoalveolar lavage fluids (NLF and BALF), as well as increased levels of total protein and cytokine/chemokines levels. Concurrently, NLF, BALF, and serum NO2- levels exhibited significant homeostatic temporal deviations as well as temporal myograohic aortic dysfunction in myography studies. Respiratory exposure to- and evidence -based retention of- WTCPM may have contributed to chronic systemic effects in exposed mice that r resembled to observed effects in WTCPM-exposed human populations. Collectively, these findings are reflective of WTCPM exposure and its effect(s) on respiratory and aortic tissues, highlighting potential dysfunctional pathways that may precipitate inflammatory events, while simultaneously altering homeostatic balances. The tight interplay between these balances, when chronically altered, may contribute to- or result in- chronically diseased pathological states.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Materiales de Construcción/toxicidad , Polvo/análisis , Endotelio Vascular/efectos de los fármacos , Exposición por Inhalación/efectos adversos , Neumonía/inducido químicamente , Contaminantes Atmosféricos/análisis , Animales , Aorta/efectos de los fármacos , Aorta/fisiopatología , Biomarcadores/sangre , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Materiales de Construcción/análisis , Endotelio Vascular/fisiopatología , Humanos , Exposición por Inhalación/análisis , Pulmón/efectos de los fármacos , Pulmón/inmunología , Ratones Endogámicos C57BL , Cavidad Nasal/efectos de los fármacos , Cavidad Nasal/inmunología , Ciudad de Nueva York , Ataques Terroristas del 11 de Septiembre , Células THP-1
17.
Neurogastroenterol Motil ; 32(8): e13866, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32337809

RESUMEN

BACKGROUND: Muscarinic receptor 1 positive allosteric modulators (M1PAMs) enhance colonic propulsive contractions and defecation through the facilitation of M1 receptor (M1R)-mediated signaling. We examined M1R expression in the colons of 5 species and compared colonic propulsion and defecation caused by the M1PAM, T440, the 5-HT4 agonist, prucalopride, and the cholinesterase inhibitor, neostigmine, in rats and dogs. METHODS: M1R expression was profiled by immunostaining and in situ hybridization. In vivo studies utilized male SD rats and beagle dogs. Colonic propulsive contractions were recorded by manometry in anesthetized rats. Gut contractions in dogs were assessed using implanted force transducers in the ileum, proximal, mid, and distal colons. KEY RESULTS: M1R was localized to neurons of myenteric and submucosal plexuses and the epithelium of the human colon. A similar receptor localization was observed in rat, dog, mouse, and pig. T440 enhanced normal defecation in rats in a dose-dependent manner. Prucalopride also enhanced defecation in rats, but the maximum effect was half that of T440. Neostigmine and T440 were similarly effective in enhancing defecation, but the effective dose of neostigmine was close to its lethal dose. In rats, all 3 compounds induced colonic contractions, but the associated propulsion was strongest with T440. In dogs, intestinal contractions elicited by T440 propagated from ileum to distal colon. Prucalopride and neostigmine also induced intestinal contractions, but these were less well coordinated. No loss of effectiveness of T440 on defecation occurred after 5 days of repeated dosing. CONCLUSION AND INFERENCES: These results suggest that M1PAMs produce highly coordinated propagating contraction by actions on the enteric nervous system of the colon. The localization of M1R to enteric neurons in both animals and humans suggests that the M1PAM effects would be translatable to human. M1PAMs provide a potential novel therapeutic option for constipation disorders.


Asunto(s)
Colon/efectos de los fármacos , Defecación/efectos de los fármacos , Fármacos Gastrointestinales/farmacología , Motilidad Gastrointestinal/efectos de los fármacos , Agonistas Muscarínicos/farmacología , Receptor Muscarínico M1/metabolismo , Animales , Benzofuranos/farmacología , Inhibidores de la Colinesterasa/farmacología , Colon/metabolismo , Perros , Masculino , Plexo Mientérico/efectos de los fármacos , Plexo Mientérico/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Agonistas del Receptor de Serotonina 5-HT4/farmacología , Plexo Submucoso/efectos de los fármacos , Plexo Submucoso/metabolismo
18.
Am J Physiol Renal Physiol ; 318(2): F298-F314, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31790304

RESUMEN

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a common chronic pelvic disorder with sensory symptoms of urinary urgency, frequency, and pain, indicating a key role for hypersensitivity of bladder-innervating sensory neurons. The inflammatory mast cell mediator histamine has long been implicated in IC/BPS, yet the direct interactions between histamine and bladder afferents remain unclear. In the present study, we show, using a mouse ex vivo bladder afferent preparation, that intravesical histamine enhanced the mechanosensitivity of subpopulations of afferents to bladder distension. Histamine also recruited "silent afferents" that were previously unresponsive to bladder distension. Furthermore, in vivo intravesical histamine enhanced activation of dorsal horn neurons within the lumbosacral spinal cord, indicating increased afferent signaling in the central nervous system. Quantitative RT-PCR revealed significant expression of histamine receptor subtypes (Hrh1-Hrh3) in mouse lumbosacral dorsal root ganglia (DRG), bladder detrusor smooth muscle, mucosa, and isolated urothelial cells. In DRG, Hrh1 was the most abundantly expressed. Acute histamine exposure evoked Ca2+ influx in select populations of DRG neurons but did not elicit calcium transients in isolated primary urothelial cells. Histamine-induced mechanical hypersensitivity ex vivo was abolished in the presence of the histamine H1 receptor antagonist pyrilamine and was not present in preparations from mice lacking transient receptor potential vanilloid 1 (TRPV1). Together, these results indicate that histamine enhances the sensitivity of bladder afferents to distension via interactions with histamine H1 receptor and TRPV1. This hypersensitivity translates to increased sensory input and activation in the spinal cord, which may underlie the symptoms of bladder hypersensitivity and pain experienced in IC/BPS.


Asunto(s)
Cistitis Intersticial/metabolismo , Histamina/administración & dosificación , Hiperalgesia/metabolismo , Mecanorreceptores/efectos de los fármacos , Mecanotransducción Celular/efectos de los fármacos , Receptores Histamínicos H1/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo , Vejiga Urinaria/inervación , Administración Intravesical , Animales , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Cistitis Intersticial/fisiopatología , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiopatología , Hiperalgesia/fisiopatología , Masculino , Mecanorreceptores/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Umbral del Dolor/efectos de los fármacos , Presión , Receptores Histamínicos H1/metabolismo , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/genética , Urotelio/efectos de los fármacos , Urotelio/metabolismo
19.
JCI Insight ; 4(20)2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31536477

RESUMEN

Itch induces scratching that removes irritants from the skin, whereas pain initiates withdrawal or avoidance of tissue damage. While pain arises from both the skin and viscera, we investigated whether pruritogenic irritant mechanisms also function within visceral pathways. We show that subsets of colon-innervating sensory neurons in mice express, either individually or in combination, the pruritogenic receptors Tgr5 and the Mas-gene-related GPCRs Mrgpra3 and Mrgprc11. Agonists of these receptors activated subsets of colonic sensory neurons and evoked colonic afferent mechanical hypersensitivity via a TRPA1-dependent mechanism. In vivo intracolonic administration of individual TGR5, MrgprA3, or MrgprC11 agonists induced pronounced visceral hypersensitivity to colorectal distension. Coadministration of these agonists as an "itch cocktail" augmented hypersensitivity to colorectal distension and changed mouse behavior. These irritant mechanisms were maintained and enhanced in a model of chronic visceral hypersensitivity relevant to irritable bowel syndrome. Neurons from human dorsal root ganglia also expressed TGR5, as well as the human ortholog MrgprX1, and showed increased responsiveness to pruritogenic agonists in pathological states. These data support the existence of an irritant-sensing system in the colon that is a visceral representation of the itch pathways found in skin, thereby contributing to sensory disturbances accompanying common intestinal disorders.


Asunto(s)
Dolor Abdominal/fisiopatología , Colon/inervación , Mucosa Intestinal/inervación , Síndrome del Colon Irritable/fisiopatología , Células Receptoras Sensoriales/metabolismo , Dolor Abdominal/etiología , Adolescente , Adulto , Animales , Colon/fisiopatología , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/citología , Voluntarios Sanos , Humanos , Mucosa Intestinal/fisiopatología , Síndrome del Colon Irritable/inducido químicamente , Síndrome del Colon Irritable/complicaciones , Síndrome del Colon Irritable/patología , Masculino , Ratones , Persona de Mediana Edad , Nocicepción/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Ácido Trinitrobencenosulfónico/toxicidad , Adulto Joven
20.
Pain ; 160(11): 2566-2579, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31335750

RESUMEN

Endometriosis, an estrogen-dependent chronic inflammatory disease, is the most common cause of chronic pelvic pain. Here, we investigated the effects of linaclotide, a Food and Drug Administration-approved treatment for IBS-C, in a rat model of endometriosis. Eight weeks after endometrium transplantation into the intestinal mesentery, rats developed endometrial lesions as well as vaginal hyperalgesia to distension and decreased mechanical hind paw withdrawal thresholds. Daily oral administration of linaclotide, a peripherally restricted guanylate cyclase-C (GC-C) agonist peptide acting locally within the gastrointestinal tract, increased pain thresholds to vaginal distension and mechanical hind paw withdrawal thresholds relative to vehicle treatment. Furthermore, using a cross-over design, administering linaclotide to rats previously administered vehicle resulted in increased hind paw withdrawal thresholds, whereas replacing linaclotide with vehicle treatment decreased hind paw withdrawal thresholds. Retrograde tracing of sensory afferent nerves from the ileum, colon, and vagina revealed that central terminals of these afferents lie in close apposition to one another within the dorsal horn of the spinal cord. We also identified dichotomizing dual-labelled ileal/colon innervating afferents as well as colon/vaginal dual-labelled neurons and a rare population of triple traced ileal/colon/vaginal neurons within thoracolumbar DRG. These observations provide potential sources of cross-organ interaction at the level of the DRG and spinal cord. GC-C expression is absent in the vagina and endometrial cysts suggesting that the actions of linaclotide are shared through nerve pathways between these organs. In summary, linaclotide may offer a novel therapeutic option not only for treatment of chronic endometriosis-associated pain, but also for concurrent treatment of comorbid chronic pelvic pain syndromes.


Asunto(s)
Endometriosis/inducido químicamente , Hiperalgesia/etiología , Dolor/tratamiento farmacológico , Péptidos/farmacología , Vías Aferentes/efectos de los fármacos , Vías Aferentes/metabolismo , Animales , Endometriosis/complicaciones , Femenino , Hiperalgesia/tratamiento farmacológico , Péptidos/efectos adversos , Péptidos/uso terapéutico , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...