Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464227

RESUMEN

Selective and controlled expansion of endogenous ß-cells has been pursued as a potential therapy for diabetes. Ideally, such therapies would preserve feedback control of ß-cell proliferation to avoid excessive ß-cell expansion and an increased risk of hypoglycemia. Here, we identified a regulator of ß-cell proliferation whose inactivation results in controlled ß-cell expansion: the protein deacetylase Sirtuin 2 (SIRT2). Sirt2 deletion in ß-cells of mice increased ß-cell proliferation during hyperglycemia with little effect in homeostatic conditions, indicating preservation of feedback control of ß-cell mass. SIRT2 restrains proliferation of human islet ß-cells cultured in glucose concentrations above the glycemic set point, demonstrating conserved SIRT2 function. Analysis of acetylated proteins in islets treated with a SIRT2 inhibitor revealed that SIRT2 deacetylates enzymes involved in oxidative phosphorylation, dampening the adaptive increase in oxygen consumption during hyperglycemia. At the transcriptomic level, Sirt2 inactivation has context-dependent effects on ß-cells, with Sirt2 controlling how ß-cells interpret hyperglycemia as a stress. Finally, we provide proof-of-principle that systemic administration of a GLP1-coupled Sirt2-targeting antisense oligonucleotide achieves ß-cell selective Sirt2 inactivation and stimulates ß-cell proliferation under hyperglycemic conditions. Overall, these studies identify a therapeutic strategy for increasing ß-cell mass in diabetes without circumventing feedback control of ß-cell proliferation.

2.
Dev Cell ; 58(9): 727-743.e11, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37040771

RESUMEN

Pancreatic islet cells derived from human pluripotent stem cells hold great promise for modeling and treating diabetes. Differences between stem-cell-derived and primary islets remain, but molecular insights to inform improvements are limited. Here, we acquire single-cell transcriptomes and accessible chromatin profiles during in vitro islet differentiation and pancreas from childhood and adult donors for comparison. We delineate major cell types, define their regulomes, and describe spatiotemporal gene regulatory relationships between transcription factors. CDX2 emerged as a regulator of enterochromaffin-like cells, which we show resemble a transient, previously unrecognized, serotonin-producing pre-ß cell population in fetal pancreas, arguing against a proposed non-pancreatic origin. Furthermore, we observe insufficient activation of signal-dependent transcriptional programs during in vitro ß cell maturation and identify sex hormones as drivers of ß cell proliferation in childhood. Altogether, our analysis provides a comprehensive understanding of cell fate acquisition in stem-cell-derived islets and a framework for manipulating cell identities and maturity.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Células Madre Pluripotentes , Adulto , Humanos , Páncreas , Diferenciación Celular/genética
3.
J Clin Invest ; 133(8)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36821378

RESUMEN

Adaptation of the islet ß cell insulin-secretory response to changing insulin demand is critical for blood glucose homeostasis, yet the mechanisms underlying this adaptation are unknown. Here, we have shown that nutrient-stimulated histone acetylation plays a key role in adapting insulin secretion through regulation of genes involved in ß cell nutrient sensing and metabolism. Nutrient regulation of the epigenome occurred at sites occupied by the chromatin-modifying enzyme lysine-specific demethylase 1 (Lsd1) in islets. ß Cell-specific deletion of Lsd1 led to insulin hypersecretion, aberrant expression of nutrient-response genes, and histone hyperacetylation. Islets from mice adapted to chronically increased insulin demand exhibited shared epigenetic and transcriptional changes. Moreover, we found that genetic variants associated with type 2 diabetes were enriched at LSD1-bound sites in human islets, suggesting that interpretation of nutrient signals is genetically determined and clinically relevant. Overall, these studies revealed that adaptive insulin secretion involves Lsd1-mediated coupling of nutrient state to regulation of the islet epigenome.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Humanos , Animales , Secreción de Insulina/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Histonas/genética , Histonas/metabolismo , Epigenoma , Islotes Pancreáticos/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Glucosa/metabolismo
4.
Diabetes ; 71(12): 2513-2529, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36162056

RESUMEN

The transition from lean to obese states involves systemic metabolic remodeling that impacts insulin sensitivity, lipid partitioning, inflammation, and glycemic control. Here, we have taken a pharmacological approach to test the role of a nutrient-regulated chromatin modifier, lysine-specific demethylase (LSD1), in obesity-associated metabolic reprogramming. We show that systemic administration of an LSD1 inhibitor (GSK-LSD1) reduces food intake and body weight, ameliorates nonalcoholic fatty liver disease (NAFLD), and improves insulin sensitivity and glycemic control in mouse models of obesity. GSK-LSD1 has little effect on systemic metabolism of lean mice, suggesting that LSD1 has a context-dependent role in promoting maladaptive changes in obesity. In analysis of insulin target tissues we identified white adipose tissue as the major site of insulin sensitization by GSK-LSD1, where it reduces adipocyte inflammation and lipolysis. We demonstrate that GSK-LSD1 reverses NAFLD in a non-hepatocyte-autonomous manner, suggesting an indirect mechanism potentially via inhibition of adipocyte lipolysis and subsequent effects on lipid partitioning. Pair-feeding experiments further revealed that effects of GSK-LSD1 on hyperglycemia and NAFLD are not a consequence of reduced food intake and weight loss. These findings suggest that targeting LSD1 could be a strategy for treatment of obesity and its associated complications including type 2 diabetes and NAFLD.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Lisina/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Insulina/metabolismo , Histona Demetilasas/metabolismo , Inflamación/metabolismo , Lípidos , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Hígado/metabolismo
5.
Nat Commun ; 11(1): 2082, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350257

RESUMEN

Developmental progression depends on temporally defined changes in gene expression mediated by transient exposure of lineage intermediates to signals in the progenitor niche. To determine whether cell-intrinsic epigenetic mechanisms contribute to signal-induced transcriptional responses, here we manipulate the signalling environment and activity of the histone demethylase LSD1 during differentiation of hESC-gut tube intermediates into pancreatic endocrine cells. We identify a transient requirement for LSD1 in endocrine cell differentiation spanning a short time-window early in pancreas development, a phenotype we reproduced in mice. Examination of enhancer and transcriptome landscapes revealed that LSD1 silences transiently active retinoic acid (RA)-induced enhancers and their target genes. Furthermore, prolonged RA exposure phenocopies LSD1 inhibition, suggesting that LSD1 regulates endocrine cell differentiation by limiting the duration of RA signalling. Our findings identify LSD1-mediated enhancer silencing as a cell-intrinsic epigenetic feedback mechanism by which the duration of the transcriptional response to a developmental signal is limited.


Asunto(s)
Células Endocrinas/citología , Células Endocrinas/metabolismo , Elementos de Facilitación Genéticos/genética , Silenciador del Gen , Histona Demetilasas/metabolismo , Islotes Pancreáticos/citología , Transducción de Señal , Tretinoina/metabolismo , Adulto , Animales , Secuencia de Bases , Diferenciación Celular/efectos de los fármacos , Células Endocrinas/efectos de los fármacos , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Islotes Pancreáticos/embriología , Masculino , Ratones , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Tretinoina/farmacología , Adulto Joven
6.
Pancreas ; 42(6): 952-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23648841

RESUMEN

OBJECTIVES: To develop a mouse model for multispectral fluorescence imaging of the pancreas and pancreatic microenvironment. METHODS: Cre/loxP technology was used to develop this model. We crossed mT/mG indicator mice, engineered to constitutively express a conditional tdTomato transgene that converts to green fluorescent protein (GFP) expression after exposure to Cre recombinase, with Pdx1-Cre transgenic mice. To characterize this model for studies of pancreas biology, we performed bright light and fluorescence imaging of body cavities and intact organs and confocal microscopy of pancreata from offspring of Pdx1-Cre and mT/mG crosses. RESULTS: Pdx1-Cre-mT/mG mice demonstrated bright GFP expression within the pancreas and duodenum and intense tdTomato expression in all other organs. Green fluorescent protein expression was mosaic in Pdx1-Cre-mT/mG pancreata, with most showing extensive conversion from tdTomato to GFP expression within the epithelial-derived elements of the pancreatic parenchyma. Because both GFP and tdTomato are membrane targeted, individual cell borders were clearly outlined in confocal images of mT/mG pancreata. CONCLUSIONS: This mouse model enables multispectral fluorescence imaging of individual cells and cell processes at the microscopic level of the pancreatic microenvironment; it should prove valuable for a variety of fluorescence imaging studies, ranging from pancreatic development to pancreatic cancer biology.


Asunto(s)
Proteínas Luminiscentes/metabolismo , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Animales , Diagnóstico por Imagen/métodos , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Integrasas/genética , Integrasas/metabolismo , Proteínas Luminiscentes/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Factores de Tiempo , Transactivadores/genética , Transactivadores/metabolismo , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...