Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 79(3): 416-424.e5, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32645367

RESUMEN

CRISPR-Cas12c/d proteins share limited homology with Cas12a and Cas9 bacterial CRISPR RNA (crRNA)-guided nucleases used widely for genome editing and DNA detection. However, Cas12c (C2c3)- and Cas12d (CasY)-catalyzed DNA cleavage and genome editing activities have not been directly observed. We show here that a short-complementarity untranslated RNA (scoutRNA), together with crRNA, is required for Cas12d-catalyzed DNA cutting. The scoutRNA differs in secondary structure from previously described tracrRNAs used by CRISPR-Cas9 and some Cas12 enzymes, and in Cas12d-containing systems, scoutRNA includes a conserved five-nucleotide sequence that is essential for activity. In addition to supporting crRNA-directed DNA recognition, biochemical and cell-based experiments establish scoutRNA as an essential cofactor for Cas12c-catalyzed pre-crRNA maturation. These results define scoutRNA as a third type of transcript encoded by a subset of CRISPR-Cas genomic loci and explain how Cas12c/d systems avoid requirements for host factors including ribonuclease III for bacterial RNA-mediated adaptive immunity.


Asunto(s)
Bacterias/genética , Proteínas Bacterianas/genética , Sistemas CRISPR-Cas , Endodesoxirribonucleasas/genética , Genoma Bacteriano/inmunología , ARN Bacteriano/genética , ARN Pequeño no Traducido/genética , Bacterias/clasificación , Bacterias/inmunología , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Endodesoxirribonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/inmunología , Escherichia coli/metabolismo , Conformación de Ácido Nucleico , Filogenia , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/metabolismo , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico
2.
Nature ; 568(7752): E8-E10, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30944483

RESUMEN

In this Article, owing to issues with the first 30 nucleotides of the sgRNA, which run in the opposite direction, corrections have been made to the Protein Data Bank (PDB) accessions in the 'Data availability' section, and this also affects Figs. 3, 4, Extended Data Fig. 6, Supplementary Table 1 and Supplementary Video 1. The original Article has been corrected online. See the accompanying Amendment for further details.

3.
Nature ; 566(7743): 218-223, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30718774

RESUMEN

The RNA-guided CRISPR-associated (Cas) proteins Cas9 and Cas12a provide adaptive immunity against invading nucleic acids, and function as powerful tools for genome editing in a wide range of organisms. Here we reveal the underlying mechanisms of a third, fundamentally distinct RNA-guided genome-editing platform named CRISPR-CasX, which uses unique structures for programmable double-stranded DNA binding and cleavage. Biochemical and in vivo data demonstrate that CasX is active for Escherichia coli and human genome modification. Eight cryo-electron microscopy structures of CasX in different states of assembly with its guide RNA and double-stranded DNA substrates reveal an extensive RNA scaffold and a domain required for DNA unwinding. These data demonstrate how CasX activity arose through convergent evolution to establish an enzyme family that is functionally separate from both Cas9 and Cas12a.


Asunto(s)
Proteínas Asociadas a CRISPR/clasificación , Proteínas Asociadas a CRISPR/ultraestructura , Sistemas CRISPR-Cas/genética , Edición Génica , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Microscopía por Crioelectrón , ADN/química , ADN/metabolismo , ADN/ultraestructura , División del ADN , Escherichia coli/genética , Evolución Molecular , Silenciador del Gen , Genoma Bacteriano/genética , Genoma Humano/genética , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Dominios Proteicos , ARN Guía de Kinetoplastida/metabolismo
4.
Mol Cell ; 73(4): 727-737.e3, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30709710

RESUMEN

CRISPR-Cas immunity requires integration of short, foreign DNA fragments into the host genome at the CRISPR locus, a site consisting of alternating repeat sequences and foreign-derived spacers. In most CRISPR systems, the proteins Cas1 and Cas2 form the integration complex and are both essential for DNA acquisition. Most type V-C and V-D systems lack the cas2 gene and have unusually short CRISPR repeats and spacers. Here, we show that a mini-integrase comprising the type V-C Cas1 protein alone catalyzes DNA integration with a preference for short (17- to 19-base-pair) DNA fragments. The mini-integrase has weak specificity for the CRISPR array. We present evidence that the Cas1 proteins form a tetramer for integration. Our findings support a model of a minimal integrase with an internal ruler mechanism that favors shorter repeats and spacers. This minimal integrase may represent the function of the ancestral Cas1 prior to Cas2 adoption.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Bacteriano/genética , Endodesoxirribonucleasas/genética , Endonucleasas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Edición Génica/métodos , Integrasas/genética , Emparejamiento Base , Proteínas Asociadas a CRISPR/metabolismo , ADN Bacteriano/metabolismo , Endodesoxirribonucleasas/metabolismo , Endonucleasas/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Integrasas/metabolismo , Motivos de Nucleótidos , Especificidad por Sustrato
5.
Science ; 362(6416): 839-842, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30337455

RESUMEN

CRISPR-Cas systems provide microbes with adaptive immunity to infectious nucleic acids and are widely employed as genome editing tools. These tools use RNA-guided Cas proteins whose large size (950 to 1400 amino acids) has been considered essential to their specific DNA- or RNA-targeting activities. Here we present a set of CRISPR-Cas systems from uncultivated archaea that contain Cas14, a family of exceptionally compact RNA-guided nucleases (400 to 700 amino acids). Despite their small size, Cas14 proteins are capable of targeted single-stranded DNA (ssDNA) cleavage without restrictive sequence requirements. Moreover, target recognition by Cas14 triggers nonspecific cutting of ssDNA molecules, an activity that enables high-fidelity single-nucleotide polymorphism genotyping (Cas14-DETECTR). Metagenomic data show that multiple CRISPR-Cas14 systems evolved independently and suggest a potential evolutionary origin of single-effector CRISPR-based adaptive immunity.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/clasificación , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/clasificación , División del ADN , ADN de Cadena Simple/química , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/clasificación , Proteínas Arqueales/genética , Proteínas Asociadas a CRISPR/genética , Conjuntos de Datos como Asunto , Endodesoxirribonucleasas/genética , Evolución Molecular , Metagenómica , Filogenia
6.
Science ; 360(6387): 436-439, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29449511

RESUMEN

CRISPR-Cas12a (Cpf1) proteins are RNA-guided enzymes that bind and cut DNA as components of bacterial adaptive immune systems. Like CRISPR-Cas9, Cas12a has been harnessed for genome editing on the basis of its ability to generate targeted, double-stranded DNA breaks. Here we show that RNA-guided DNA binding unleashes indiscriminate single-stranded DNA (ssDNA) cleavage activity by Cas12a that completely degrades ssDNA molecules. We find that target-activated, nonspecific single-stranded deoxyribonuclease (ssDNase) cleavage is also a property of other type V CRISPR-Cas12 enzymes. By combining Cas12a ssDNase activation with isothermal amplification, we create a method termed DNA endonuclease-targeted CRISPR trans reporter (DETECTR), which achieves attomolar sensitivity for DNA detection. DETECTR enables rapid and specific detection of human papillomavirus in patient samples, thereby providing a simple platform for molecular diagnostics.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Asociadas a CRISPR/química , Sistemas CRISPR-Cas , Clostridiales/enzimología , División del ADN , ADN de Cadena Simple/química , Endonucleasas/química , Cinética , Especificidad por Sustrato
7.
Nat Commun ; 8(1): 1424, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29127284

RESUMEN

CRISPR-Cas9 is a powerful technology that has enabled genome editing in a wide range of species. However, the currently developed Cas9 homologs all originate from mesophilic bacteria, making them susceptible to degradation and unsuitable for applications requiring cleavage at elevated temperatures. Here, we show that the Cas9 protein from the thermophilic bacterium Geobacillus stearothermophilus (GeoCas9) catalyzes RNA-guided DNA cleavage at elevated temperatures. GeoCas9 is active at temperatures up to 70 °C, compared to 45 °C for Streptococcus pyogenes Cas9 (SpyCas9), which expands the temperature range for CRISPR-Cas9 applications. We also found that GeoCas9 is an effective tool for editing mammalian genomes when delivered as a ribonucleoprotein (RNP) complex. Together with an increased lifetime in human plasma, the thermostable GeoCas9 provides the foundation for improved RNP delivery in vivo and expands the temperature range of CRISPR-Cas9.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endonucleasas/metabolismo , Geobacillus stearothermophilus/enzimología , Proteínas Bacterianas/administración & dosificación , Proteínas Bacterianas/sangre , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Endonucleasas/administración & dosificación , Endonucleasas/sangre , Estabilidad de Enzimas , Edición Génica , Calor , Humanos , Modelos Moleculares , Ingeniería de Proteínas , Ribonucleoproteínas/administración & dosificación
8.
Nature ; 550(7676): 407-410, 2017 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-28931002

RESUMEN

The RNA-guided CRISPR-Cas9 nuclease from Streptococcus pyogenes (SpCas9) has been widely repurposed for genome editing. High-fidelity (SpCas9-HF1) and enhanced specificity (eSpCas9(1.1)) variants exhibit substantially reduced off-target cleavage in human cells, but the mechanism of target discrimination and the potential to further improve fidelity are unknown. Here, using single-molecule Förster resonance energy transfer experiments, we show that both SpCas9-HF1 and eSpCas9(1.1) are trapped in an inactive state when bound to mismatched targets. We find that a non-catalytic domain within Cas9, REC3, recognizes target complementarity and governs the HNH nuclease to regulate overall catalytic competence. Exploiting this observation, we design a new hyper-accurate Cas9 variant (HypaCas9) that demonstrates high genome-wide specificity without compromising on-target activity in human cells. These results offer a more comprehensive model to rationalize and modify the balance between target recognition and nuclease activation for precision genome editing.


Asunto(s)
Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Edición Génica/métodos , Mutagénesis , Streptococcus pyogenes/enzimología , Biotecnología/métodos , Proteínas Asociadas a CRISPR/genética , Endonucleasas/química , Endonucleasas/genética , Endonucleasas/metabolismo , Activación Enzimática , Variación Genética , Humanos , Dominios Proteicos , Streptococcus pyogenes/genética , Especificidad por Sustrato
9.
Cell ; 170(6): 1224-1233.e15, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28844692

RESUMEN

CRISPR-Cas9 proteins function within bacterial immune systems to target and destroy invasive DNA and have been harnessed as a robust technology for genome editing. Small bacteriophage-encoded anti-CRISPR proteins (Acrs) can inactivate Cas9, providing an efficient off switch for Cas9-based applications. Here, we show that two Acrs, AcrIIC1 and AcrIIC3, inhibit Cas9 by distinct strategies. AcrIIC1 is a broad-spectrum Cas9 inhibitor that prevents DNA cutting by multiple divergent Cas9 orthologs through direct binding to the conserved HNH catalytic domain of Cas9. A crystal structure of an AcrIIC1-Cas9 HNH domain complex shows how AcrIIC1 traps Cas9 in a DNA-bound but catalytically inactive state. By contrast, AcrIIC3 blocks activity of a single Cas9 ortholog and induces Cas9 dimerization while preventing binding to the target DNA. These two orthogonal mechanisms allow for separate control of Cas9 target binding and cleavage and suggest applications to allow DNA binding while preventing DNA cutting by Cas9.


Asunto(s)
Sistemas CRISPR-Cas , Endonucleasas/antagonistas & inhibidores , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Endonucleasas/química , Endonucleasas/genética , Endonucleasas/metabolismo , Evolución Molecular , Células HEK293 , Humanos , Dominios Proteicos , Alineación de Secuencia
10.
Nature ; 542(7640): 237-241, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28005056

RESUMEN

CRISPR-Cas systems provide microbes with adaptive immunity by employing short DNA sequences, termed spacers, that guide Cas proteins to cleave foreign DNA. Class 2 CRISPR-Cas systems are streamlined versions, in which a single RNA-bound Cas protein recognizes and cleaves target sequences. The programmable nature of these minimal systems has enabled researchers to repurpose them into a versatile technology that is broadly revolutionizing biological and clinical research. However, current CRISPR-Cas technologies are based solely on systems from isolated bacteria, leaving the vast majority of enzymes from organisms that have not been cultured untapped. Metagenomics, the sequencing of DNA extracted directly from natural microbial communities, provides access to the genetic material of a huge array of uncultivated organisms. Here, using genome-resolved metagenomics, we identify a number of CRISPR-Cas systems, including the first reported Cas9 in the archaeal domain of life, to our knowledge. This divergent Cas9 protein was found in little-studied nanoarchaea as part of an active CRISPR-Cas system. In bacteria, we discovered two previously unknown systems, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. Notably, all required functional components were identified by metagenomics, enabling validation of robust in vivo RNA-guided DNA interference activity in Escherichia coli. Interrogation of environmental microbial communities combined with in vivo experiments allows us to access an unprecedented diversity of genomes, the content of which will expand the repertoire of microbe-based biotechnologies.


Asunto(s)
Archaea/genética , Bacterias/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiología , Secuencia de Aminoácidos , Secuencia de Bases , Biotecnología/tendencias , Proteínas Asociadas a CRISPR/genética , ADN/genética , ADN/metabolismo , Escherichia coli/genética , Perfilación de la Expresión Génica , Genoma/genética , Metagenómica , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Reproducibilidad de los Resultados
11.
J Am Soc Mass Spectrom ; 28(1): 87-95, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27506206

RESUMEN

Native mass spectrometry (MS) is an emerging approach to study protein complexes in their near-native states and to elucidate their stoichiometry and topology. Here, we report a native MS study of the membrane-embedded reaction center (RC) protein complex from the purple photosynthetic bacterium Rhodobacter sphaeroides. The membrane-embedded RC protein complex is stabilized by detergent micelles in aqueous solution, directly introduced into a mass spectrometer by nano-electrospray (nESI), and freed of detergents and dissociated in the gas phase by collisional activation. As the collision energy is increased, the chlorophyll pigments are gradually released from the RC complex, suggesting that native MS introduces a near-native structure that continues to bind pigments. Two bacteriochlorophyll a pigments remain tightly bound to the RC protein at the highest collision energy. The order of pigment release and their resistance to release by gas-phase activation indicates the strength of pigment interaction in the RC complex. This investigation sets the stage for future native MS studies of membrane-embedded photosynthetic pigment-protein and related complexes.Graphical Abstract.


Asunto(s)
Proteínas Bacterianas/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter sphaeroides/química , Espectrometría de Masa por Ionización de Electrospray , Clorofila/química , Detergentes/química , Micelas , Modelos Moleculares , Espectrometría de Masa por Ionización de Electrospray/métodos
12.
ACS Synth Biol ; 6(1): 120-129, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-27548779

RESUMEN

Thermostabilization of an enzyme with complete retention of catalytic efficiency was demonstrated on recombinant 3-dehydroshikimate dehydratase (DHSase or wtAsbF) from Bacillus thuringiensis serovar konkukian 97-27 (hereafter, B. thuringiensis 97-27). The wtAsbF is relatively unstable at 37 °C, in vitro (t1/237 = 15 min), in the absence of divalent metal. We adopted a structure-based design to identify stabilizing mutations and created a combinatorial library based upon predicted mutations at specific locations on the enzyme surface. A diversified asbF library (∼2000 variants) was expressed in E. coli harboring a green fluorescent protein (GFP) reporter system linked to the product of wtAsbF activity (3,4-dihydroxybenzoate, DHB). Mutations detrimental to DHSase function were rapidly eliminated using a high throughput fluorescence activated cell sorting (FACS) approach. After a single sorting round and heat screen at 50 °C, a triple AsbF mutant (Mut1), T61N, H135Y, and H257P, was isolated and characterized. The half-life of Mut1 at 37 °C was >10-fold higher than the wtAsbF (t1/237 = 169 min). Further, the second-order rate constants for both wtAsbF and Mut1 were approximately equal (9.9 × 105 M-1 s-1, 7.8 × 105 M-1 s-1, respectively), thus demonstrating protein thermostability did not come at the expense of enzyme thermophilicity. In addition, in vivo overexpression of Mut1 in E. coli resulted in a ∼60-fold increase in functional enzyme when compared to the wild-type enzyme under the identical expression conditions. Finally, overexpression of the thermostable AsbF resulted in an approximate 80-120% increase in DHB accumulation in the media relative to the wild-type enzyme.


Asunto(s)
Bacillus thuringiensis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hidroliasas/química , Hidroliasas/metabolismo , Bacillus thuringiensis/genética , Proteínas Bacterianas/genética , Estabilidad de Enzimas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos , Biblioteca Genómica , Ensayos Analíticos de Alto Rendimiento , Hidroliasas/genética , Cinética , Mutación , Conformación Proteica , Ingeniería de Proteínas , Serogrupo , Biología Sintética , Temperatura
13.
Mol Cell ; 62(6): 824-833, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27211867

RESUMEN

Bacteria and archaea employ adaptive immunity against foreign genetic elements using CRISPR-Cas systems. To generate immunological memory, the Cas1-Cas2 protein complex captures 30-40 base pair segments of foreign DNA and catalyzes their integration into the host genome as unique spacer sequences. Although spacers are inserted strictly at the A-T-rich leader end of CRISPR loci in vivo, the molecular mechanism of leader-specific spacer integration remains poorly understood. Here we show that the E. coli integration host factor (IHF) protein is required for spacer acquisition in vivo and for integration into linear DNA in vitro. IHF binds to the leader sequence and induces a sharp DNA bend, allowing the Cas1-Cas2 integrase to catalyze the first integration reaction at the leader-repeat border. Together, these results reveal that Cas1-Cas2-mediated spacer integration requires IHF-induced target DNA bending and explain the elusive role of CRISPR leader sequences during spacer acquisition.


Asunto(s)
Inmunidad Adaptativa , Proteínas Asociadas a CRISPR/inmunología , Sistemas CRISPR-Cas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , ADN Bacteriano/inmunología , Endodesoxirribonucleasas/inmunología , Endonucleasas/inmunología , Proteínas de Escherichia coli/inmunología , Escherichia coli/inmunología , Memoria Inmunológica , Factores de Integración del Huésped/inmunología , Sitios de Unión , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Factores de Integración del Huésped/genética , Factores de Integración del Huésped/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Relación Estructura-Actividad , Factores de Tiempo
14.
ACS Chem Biol ; 11(3): 681-8, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26857072

RESUMEN

The application of the CRISPR-Cas9 system for genome engineering has revolutionized the ability to interrogate genomes of mammalian cells. Programming the Cas9 endonuclease to induce DNA breaks at specified sites is achieved by simply modifying the sequence of its cognate guide RNA. Although Cas9-mediated genome editing has been shown to be highly specific, cleavage events at off-target sites have also been reported. Minimizing, and eventually abolishing, unwanted off-target cleavage remains a major goal of the CRISPR-Cas9 technology before its implementation for therapeutic use. Recent efforts have turned to chemical biology and biophysical approaches to engineer inducible genome editing systems for controlling Cas9 activity at the transcriptional and protein levels. Here, we review recent advancements to modulate Cas9-mediated genome editing by engineering split-Cas9 constructs, inteins, small molecules, protein-based dimerizing domains, and light-inducible systems.


Asunto(s)
Sistemas CRISPR-Cas/fisiología , Animales , Proteínas Asociadas a CRISPR , Regulación de la Expresión Génica/fisiología , Ingeniería Genética , Genoma/genética , Unión Proteica
15.
Mol Cell ; 60(3): 398-407, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26545076

RESUMEN

Double-stranded DNA (dsDNA) cleavage by Cas9 is a hallmark of type II CRISPR-Cas immune systems. Cas9-guide RNA complexes recognize 20-base-pair sequences in DNA and generate a site-specific double-strand break, a robust activity harnessed for genome editing. DNA recognition by all studied Cas9 enzymes requires a protospacer adjacent motif (PAM) next to the target site. We show that Cas9 enzymes from evolutionarily divergent bacteria can recognize and cleave single-stranded DNA (ssDNA) by an RNA-guided, PAM-independent recognition mechanism. Comparative analysis shows that in contrast to the type II-A S. pyogenes Cas9 that is widely used for genome engineering, the smaller type II-C Cas9 proteins have limited dsDNA binding and unwinding activity and promiscuous guide RNA specificity. These results indicate that inefficiency of type II-C Cas9 enzymes for genome editing results from a limited ability to cleave dsDNA and suggest that ssDNA cleavage was an ancestral function of the Cas9 enzyme family.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas CRISPR-Cas/fisiología , ADN de Cadena Simple/metabolismo , Endonucleasas/metabolismo , Streptococcus pyogenes/enzimología , Proteínas Bacterianas/genética , ADN de Cadena Simple/genética , Endonucleasas/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Streptococcus pyogenes/genética
16.
Nature ; 527(7579): 535-8, 2015 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-26503043

RESUMEN

Bacteria and archaea generate adaptive immunity against phages and plasmids by integrating foreign DNA of specific 30-40-base-pair lengths into clustered regularly interspaced short palindromic repeat (CRISPR) loci as spacer segments. The universally conserved Cas1-Cas2 integrase complex catalyses spacer acquisition using a direct nucleophilic integration mechanism similar to retroviral integrases and transposases. How the Cas1-Cas2 complex selects foreign DNA substrates for integration remains unknown. Here we present X-ray crystal structures of the Escherichia coli Cas1-Cas2 complex bound to cognate 33-nucleotide protospacer DNA substrates. The protein complex creates a curved binding surface spanning the length of the DNA and splays the ends of the protospacer to allow each terminal nucleophilic 3'-OH to enter a channel leading into the Cas1 active sites. Phosphodiester backbone interactions between the protospacer and the proteins explain the sequence-nonspecific substrate selection observed in vivo. Our results uncover the structural basis for foreign DNA capture and the mechanism by which Cas1-Cas2 functions as a molecular ruler to dictate the sequence architecture of CRISPR loci.


Asunto(s)
Inmunidad Adaptativa , Proteínas Asociadas a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN Viral/genética , ADN Viral/inmunología , Integración Viral , Bacteriófago M13/genética , Bacteriófago M13/inmunología , Secuencia de Bases , Proteínas Asociadas a CRISPR/química , Dominio Catalítico , Cristalografía por Rayos X , ADN Viral/química , ADN Viral/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/inmunología , Escherichia coli/virología , Integrasas/química , Integrasas/metabolismo , Modelos Moleculares , Integración Viral/genética , Integración Viral/inmunología
17.
Biochim Biophys Acta ; 1837(11): 1904-1912, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25150185

RESUMEN

The chlorophyll a-chlorophyll c2-peridinin-protein (apcPC), a major light harvesting component in peridinin-containing dinoflagellates, is an integral membrane protein complex. We isolated functional acpPC from the dinoflagellate Symbiodinium. Both SDS-PAGE and electrospray ionization mass spectrometry (ESI-MS) analysis quantified the denatured subunit polypeptide molecular weight (MW) as 18kDa. Size-exclusion chromatography (SEC) and blue native gel electrophoresis (BN-PAGE) were employed to estimate the size of native acpPC complex to be 64-66kDa. We also performed native ESI-MS, which can volatilize and ionize active biological samples in their native states. Our result demonstrated that the native acpPC complex carried 14 to 16 positive charges, and the MW of acpPC with all the associated pigments was found to be 66.5kDa. Based on these data and the pigment stoichiometry, we propose that the functional light harvesting state of acpPC is a trimer. Our bioinformatic analysis indicated that Symbiodinium acpPC shares high similarity to diatom fucoxanthin Chl a/c binding protein (FCP), which tends to form a trimer. Additionally, acpPC protein sequence variation was confirmed by de novo protein sequencing. Its sequence heterogeneity is also discussed in the context of Symbiodinium eco-physiological adaptations.

18.
Anal Bioanal Chem ; 404(8): 2329-38, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22983169

RESUMEN

Photosynthetic organisms have light-harvesting complexes that absorb and transfer energy efficiently to reaction centers. Light-harvesting complexes (LHCs) have received increased attention in order to understand the natural photosynthetic process and also to utilize their unique properties in fabricating efficient artificial and bio-hybrid devices to capture solar energy. In this work, LHCs with different architectures, sizes, and absorption spectra, such as chlorosomes, Fenna-Matthews-Olson (FMO) protein, LH2 complex, and phycobilisome have been characterized by an electrospray-scanning mobility particle-sizer system (ES-SMPS). The size measured by ES-SMPS for FMO, chlorosomes, LH2, and phycobilisome were 6.4, 23.3, 9.5, and 33.4 nm, respectively. These size measurements were compared with values measured by dynamic light scattering and those reported in the literature. These complexes were deposited onto a transparent substrate by electrospray deposition. Absorption and fluorescence spectra of the deposited LHCs were measured. It was observed that the LHCs have light absorption and fluorescence spectra similar to that in solution, demonstrating the viability of the process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...