Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-30062009

RESUMEN

BACKGROUND: Marbling, or intramuscular fat, is an important factor contributing to the palatability of beef. Vitamin A, through its active metabolite, retinoic acid, promotes the formation of new fat cells (adipogenesis). As intramuscular adipogenesis is active during the neonatal stage, we hypothesized that vitamin A administration during the neonatal stage would enhance intramuscular adipogenesis and marbling. METHODS: Angus steer calves (n = 30), in a completely randomized design, were randomly allotted to three treatment groups at birth, receiving 0, 150,000, or 300,000 IU of vitamin A at both birth and one month of age. A biopsy of the biceps femoris muscle was collected at two months of age. After weaning at 210 d of age, steers were fed a backgrounding diet in a feedlot until 308 d of age, when they were transitioned to a high concentrate finishing diet and implanted with trenbolone/estradiol/tylosin mixture. Steers were harvested at an average of 438 d of age. All diets were formulated to meet nutrient requirements. RESULTS: Weaning weight and weight during the backgrounding phase were linearly increased (P <  0.05) by vitamin A level, though no difference in body weight was observed at harvest. Intramuscular fat of steers at 308 d of age, measured by ultrasound, quadratically increased (P <  0.05) with vitamin A level from 4.0±0.26 % to 4.9±0.26 %. Similarly, carcass marbling score in the ribeye quadratically increased (P < 0.05). CONCLUSION: Administration of vitamin A at birth increased weaning weight and enhanced marbling fat development. Thus, vitamin A administration provides a practical method for increasing marbling and early growth of beef cattle.

2.
Meat Sci ; 120: 100-106, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27086067

RESUMEN

To improve the efficiency of animal production, livestock have been extensively selected or managed to reduce fat accumulation and increase lean growth, which reduces intramuscular or marbling fat content. To enhance marbling, a better understanding of the mechanisms regulating adipogenesis is needed. Vitamin A has recently been shown to have a profound impact on all stages of adipogenesis. Retinoic acid, an active metabolite of vitamin A, activates both retinoic acid receptors (RAR) and retinoid X receptors (RXR), inducing epigenetic changes in key regulatory genes governing adipogenesis. Additionally, Vitamin D and folates interact with the retinoic acid receptors to regulate adipogenesis. In this review, we discuss nutritional regulation of adipogenesis, focusing on retinoic acid and its impact on epigenetic modifications of key adipogenic genes.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Nutrigenómica , Tretinoina/farmacología , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Tejido Adiposo/metabolismo , Animales , Metilación de ADN/efectos de los fármacos , Epigenómica , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Ácido Fólico/farmacología , Regulación de la Expresión Génica , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Receptores X Retinoide/genética , Receptores X Retinoide/metabolismo , Vitamina D/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...