Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 296: 100246, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33853758

RESUMEN

Ubiquitin is a versatile posttranslational modification, which is covalently attached to protein targets either as a single moiety or as a ubiquitin chain. In contrast to K48 and K63-linked chains, which have been extensively studied, the regulation and function of most atypical ubiquitin chains are only starting to emerge. The deubiquitinase TRABID/ZRANB1 is tuned for the recognition and cleavage of K29 and K33-linked chains. Yet, substrates of TRABID and the cellular functions of these atypical ubiquitin signals remain unclear. We determined the interactome of two TRABID constructs rendered catalytic dead either through a point mutation in the catalytic cysteine residue or through removal of the OTU catalytic domain. We identified 50 proteins trapped by both constructs and which therefore represent candidate substrates of TRABID. The E3 ubiquitin ligase HECTD1 was then validated as a substrate of TRABID and used UbiCREST and Ub-AQUA proteomics to show that HECTD1 preferentially assembles K29- and K48-linked ubiquitin chains. Further in vitro autoubiquitination assays using ubiquitin mutants established that while HECTD1 can assemble short homotypic K29 and K48-linked chains, it requires branching at K29/K48 in order to achieve its full ubiquitin ligase activity. We next used transient knockdown and genetic knockout of TRABID in mammalian cells in order to determine the functional relationship between TRABID and HECTD1. This revealed that upon TRABID depletion, HECTD1 is readily degraded. Thus, this study identifies HECTD1 as a mammalian E3 ligase that assembles branched K29/K48 chains and also establishes TRABID-HECTD1 as a DUB/E3 pair regulating K29 linkages.


Asunto(s)
Endopeptidasas/genética , Proteómica , Ubiquitina-Proteína Ligasas/genética , Ubiquitina/genética , Ubiquitinación/genética , Secuencia de Aminoácidos/genética , Animales , Células COS , Chlorocebus aethiops , Perros , Endopeptidasas/química , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Mutación Puntual/genética , Proteolisis , Transducción de Señal/genética , Especificidad por Sustrato/genética , Ubiquitina/química , Ubiquitina-Proteína Ligasas/química
2.
Adv Exp Med Biol ; 1233: 195-221, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32274758

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia, most prevalent in the elderly population and has a significant impact on individuals and their family as well as the health care system and the economy. While the number of patients affected by various forms of dementia including AD is on the increase, there is currently no cure. Although genome-wide association studies have identified genetic markers for familial AD, the molecular mechanisms underlying the initiation and development of both familial and sporadic AD remain poorly understood. Most neurodegenerative diseases and in particular those associated with dementia have been defined as proteinopathies due to the presence of intra- and/or extracellular protein aggregates in the brain of affected individuals. Although loss of proteostasis in AD has been known for decades, it is only in recent years that we have come to appreciate the role of ubiquitin-dependent mechanisms in brain homeostasis and in brain diseases. Ubiquitin is a highly versatile post-translational modification which regulates many aspects of protein fate and function, including protein degradation by the Ubiquitin-Proteasome System (UPS), autophagy-mediated removal of damaged organelles and proteins, lysosomal turnover of membrane proteins and of extracellular molecules brought inside the cell through endocytosis. Amyloid-ß (Aß) fragments as well as hyperphosphorylation of Tau are hallmarks of AD, and these are found in extracellular plaques and intracellular fibrils in the brain of individuals with AD, respectively. Yet, whether it is the oligomeric or the soluble species of Aß and Tau that mediate toxicity is still unclear. These proteins impact on mitochondrial energy metabolism, inflammation, as well as a number of housekeeping processes including protein degradation through the UPS and autophagy. In this chapter, we will discuss the role of ubiquitin in neuronal homeostasis as well as in AD; summarise crosstalks between the enzymes that regulate protein ubiquitination and the toxic proteins Tau and Aß; highlight emerging molecular mechanisms in AD as well as future strategies which aim to exploit the ubiquitin system as a source for next-generation therapeutics.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Ubiquitina/metabolismo , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Lisosomas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas tau/química , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA