Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(8): e70077, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39114162

RESUMEN

Tree regeneration shapes forest carbon dynamics by determining long-term forest composition and structure, which suggests that threats to natural regeneration may diminish the capacity of forests to replace live tree carbon transferred to the atmosphere or other pools through tree mortality. Yet, the potential implications of tree regeneration patterns for future carbon dynamics have been sparsely studied. We used forest inventory plots to investigate whether the composition of existing tree regeneration is consistent with aboveground carbon stock loss, replacement, or gain for forests across the northeastern and midwestern USA, leveraging a recently developed method to predict the likelihood of sapling recruitment from seedling abundance tallied within six seedling height classes. A comparison of carbon stock predictions from tree and seedling composition suggested that 29% of plots were poised to lose carbon based on seedling composition, 55% were poised for replacement of carbon stocks (<5 Mg ha-1 difference) and 16% were poised to gain carbon. Forests predicted to lose carbon tended to be on steeper slopes, at lower latitudes, and in rolling upland environments. Although plots predicted to gain and lose carbon had similar stand ages, carbon loss plots had greater current carbon stocks. Synthesis and applications. Our results demonstrate the utility of considering tree regeneration through the lens of carbon replacement to develop effective management strategies to secure long-term carbon storage and resilience in the context of global change. Forests poised to lose C due to climate change and other stressors could be prioritized for regeneration strategies that enhance long-term carbon resilience and stewardship.

2.
Proc Natl Acad Sci U S A ; 120(11): e2208120120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36877837

RESUMEN

Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration.


Asunto(s)
Incendios , Tracheophyta , Incendios Forestales , Clima , Cambio Climático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA