Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 196: 115609, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37806012

RESUMEN

Microparticles (MP; particles <5 mm) are ubiquitous in marine environments. Understanding MP concentrations at different spatial scales in the Salish Sea, Washington, USA, can provide insight into how ecologically and economically important species may be affected. We collected mussels across the Salish Sea at regional and localized scales, chemically processed tissue to assess MP contamination, and used visual and chemical analyses for particle identification. Throughout the Salish Sea, mussel MP concentrations averaged 0.75 ± 0.09 MP g-1 wet tissue. At a regional scale, we identified slight differences in concentrations and morphotypes of MP while at a localized scale these metrics were not significant and did not differ from controls. In a subset of particles, 20 % were identified as synthetic materials, which include polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), and nylon. Differences in MP sources, heterogeneous transport of MP, and distinct shellfish feeding mechanisms may contribute to plastic contamination patterns in the Salish Sea.


Asunto(s)
Bivalvos , Contaminantes Químicos del Agua , Animales , Plásticos/análisis , Washingtón , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis
2.
Environ Toxicol Chem ; 41(4): 917-930, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34379816

RESUMEN

Anthropogenic debris including microparticles (<5 mm) are ubiquitous in marine environments. The Salish Sea experiences seasonal fluctuations in precipitation, river discharge, sewage overflow events, and tourism-all variables previously thought to have an impact on microparticle transport and concentrations. Our goals are two-fold: 1) describe long-term microparticle contamination data including concentration, type, and size; and 2) determine if seasonal microparticle concentrations are dependent on environmental or tourism variables in Elliott Bay, Salish Sea. We sampled 100 L of seawater at a depth of approximately 9 m at the Seattle Aquarium, Seattle, Washington State, United States, approximately every two weeks from 2019 through 2020 and used an oil extraction protocol to separate microparticles. We found that microparticle concentrations ranged from 0 to 0.64 particles L-1 and fibers were the most common type observed. Microparticle concentrations exhibited a breakpoint on 10 April 2020, where estimated slope and associated microparticle concentration significantly declined. Further, when considering both environmental as well as tourism variables, temporal microparticle concentration was best described by a mixed-effects model, with tourism as the fixed effect and the person counting microparticles as the random effect. Although monitoring efforts presented set out to identify effects of seasonality and interannual differences in microparticle concentrations, it instead captured an effect of decreased tourism due to the global Covid-19 pandemic. Long-term monitoring is critical to establish temporal microparticle concentrations and to help researchers understand if there are certain events, both seasonal and sporadic (e.g., rain events, tourism, or global pandemics), when the marine environment is more at risk from anthropogenic pollution. Environ Toxicol Chem 2022;41:917-930. © 2021 Seattle Aquarium. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
COVID-19 , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Humanos , Pandemias , Washingtón , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
3.
Mar Pollut Bull ; 165: 112165, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33611232

RESUMEN

Microplastic (MP; < 5 mm) is ubiquitous in marine environments and is likely transported by biotic benthic-pelagic coupling. Mussels are key benthic-pelagic couplers, concentrating particles from the water column into dense and nutrient rich biodeposits. This study examined how MP affects benthic-pelagic coupling processes of mussels exposed to feeding regimes with and without MP by measuring four attributes of biodeposits: 1) morphology, 2) quantity of algal and MP particles, 3) sinking rate, and 4) resuspension velocity. We found interacting effects of particle treatment and biodeposit type on biodeposit morphology. Biodeposits from the algae treatment contained more algal cells on average than biodeposits from the MP treatment. Biodeposits from the MP treatment sank 34-37% slower and resuspended in 7-22% slower shear velocities than biodeposits from the algae treatment. Decreases in sinking and resuspension velocities of biodeposits containing MP may increase dispersal distances, thus decreasing in-bed nutrient input and increasing nutrient subsidies for other communities.


Asunto(s)
Bivalvos , Microplásticos , Animales , Plantas , Plásticos , Alimentos Marinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...