Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Exp Eye Res ; : 110065, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39222765

RESUMEN

Retinal neurodegenerative diseases, including hypertensive retinopathy, involve progressive damage to retinal neurons, leading to visual impairment. In this study, we investigated the pathological mechanisms underlying retinal neurodegeneration in spontaneously hypertensive rats (SHR), using Wistar Kyoto (WKY) rats as normotensive controls. We observed that SHR exhibited significantly higher blood pressure and decreased retinal thickness, indicating retinal neurodegeneration. Molecular tests including quantitative real-time polymerase chain reaction, immunoblot, and immunofluorescent staining showed elevated levels of the pro-inflammatory cytokine tumor necrosis factor-α, apoptotic markers (Fas, FasL, caspase-8, active caspase-3, and cleaved poly (ADP-ribose) polymerase), and necroptotic markers (receptor-interacting protein kinase-1 and -3) in SHR retinas. Additionally, we found elevated transforming growth factor-ß (TGF-ß) levels in the retinal pigment epithelium (RPE) of SHR, with a decrease in lecithin retinol acyltransferase (LRAT), which regulates retinoid metabolism and photoreceptor health. In human RPE cells (ARPE-19), TGF-ß administration suppressed mRNA and protein levels of LRAT; and vactosertib, a selective inhibitor of TGF-ß receptor kinase type 1, reversed the effect of TGF-ß. These findings suggest that hypertension-induced retinal neurodegeneration involves inflammation, apoptosis, necroptosis, and disrupted retinoid metabolism, providing potential therapeutic targets for hypertensive retinopathy.

2.
Pathophysiology ; 31(1): 89-99, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38390944

RESUMEN

Our purpose in this study was to identify the role played by oxidative stress in the changes to proteoglycans that occur under hyperglycemic conditions, using primary rat retinal microvascular endothelial cells (RRMEC) and cultured ophthalmic arteries. The cells and blood vessels obtained from rats were cultured in normal glucose (5.6 mM) and high glucose (25 mM) with or without N-acetylcysteine (NAC), an antioxidant. Intracellular oxidative stress was determined by measuring dihydroethidium (DHE) fluorescence and malondialdehyde (MDA)-modified protein levels. mRNA and protein levels were evaluated using quantitative real-time polymerase chain reaction and immunoblot, respectively. High glucose increased levels of glypican-1 mRNA and protein. The level of syndecan-1 mRNA also was increased, but its protein level was decreased, by high glucose. Evaluation of DHE and MDA showed that high glucose increased oxidative stress. These changes caused by high glucose were significantly reversed by NAC treatment. Matrix metalloproteinase-9 (MMP-9) levels, which increased under high glucose conditions, were suppressed by NAC treatment. Oxidative stress caused by hyperglycemia may be responsible for significant changes to the ocular endothelial glycocalyx.

3.
Exp Eye Res ; 234: 109617, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37595676

RESUMEN

Hypertension is associated with changes in the retina and choroid, with resulting consequences of increased vascular permeability and microhemorrhages. To date, very little information is available regarding the changes in the retinal and choroidal endothelial surface layer. In this study, we have examined changes in protein expression of several molecules including platelet endothelial cell adhesion molecule-1 (PECAM-1), vascular endothelial cadherin (VE-cadherin), glypican-1, and syndecan-1, in spontaneously hypertensive rats (SHR) compared to control normotensive Wistar Kyoto (WKY) rats. In male SHR vs WKY rat retinas, decreases were found for VE-cadherin and syndecan-1; whereas in female retinas, decreases were found for PECAM-1, glypican-1, and syndecan-1. In male SHR vs WKY rat choroid, we found an increase in glypican-1, but choroidal syndecan-1 was decreased in SHR in both males and females. Therefore, decreases in SHR of both retinal and choroidal syndecan-1 were found in both males and females. These losses of syndecan-1 were accompanied by an increase in plasma levels of the proteoglycan, indicating possible systemic endothelial shedding. In contrast, plasma levels of glypican-1 decreased. Interestingly, in normotensive WKY rats, retinal levels of all four endothelial surface molecules were higher in females than in males, in some cases, by substantial amounts. In summary, a number of changes occur in endothelial surface molecules in SHR, with some changes being sex-dependent; it is possible that the loss of these molecules contributes to the vascular dysfunction that occurs in hypertensive retina and choroid.


Asunto(s)
Hipertensión , Sindecano-1 , Femenino , Masculino , Ratas , Animales , Ratas Endogámicas WKY , Glipicanos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta , Ratas Endogámicas SHR , Coroides
4.
Am J Physiol Cell Physiol ; 324(5): C1061-C1077, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36939202

RESUMEN

The endothelial glycocalyx (EG) is a meshlike network present on the apical surface of the endothelium. Membrane-bound proteoglycans, the major backbone molecules of the EG, consist of glycosaminoglycans attached to core proteins. In addition to maintaining the integrity of the endothelial barrier, the EG regulates inflammation and perfusion and acts as a mechanosensor. The loss of the EG can cause endothelial dysfunction and drive the progression of vascular diseases including diabetic retinopathy. Therefore, the EG presents a novel therapeutic target for treatment of vascular complications. In this review article, we provide an overview of the structure and function of the EG in the retina. Our particular focus is on hyperglycemia-induced perturbations in the glycocalyx structure in the retina, potential underlying mechanisms, and clinical trials studying protective treatments against degradation of the EG.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Hiperglucemia , Enfermedades Vasculares , Humanos , Retinopatía Diabética/complicaciones , Retinopatía Diabética/metabolismo , Glicocálix/metabolismo , Endotelio Vascular/metabolismo , Hiperglucemia/metabolismo , Enfermedades Vasculares/metabolismo , Retina/metabolismo , Diabetes Mellitus/metabolismo
5.
Pathophysiology ; 29(4): 663-677, 2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36548208

RESUMEN

PURPOSE: Previous studies suggest that the endothelial glycocalyx adds to vascular resistance, inhibits thrombosis, and is critical for regulating homogeneous blood flow and ensuring uniform red blood cell (RBC) distribution. However, these functions and consequences of the glycocalyx have not been examined in the retina. We hypothesize that the endothelial glycocalyx is a critical regulator of retinal hemodynamics and perfusion and decreases the propensity for retinal thrombus formation. METHODS: Hyaluronidase and heparinase, which are endothelial glycocalyx-degrading enzymes, were infused into mice. Fluorescein isothiocyanate-dextran (2000 kDa) was injected to measure lumen diameter, while RBC velocity and distribution were measured using fluorescently labeled RBCs. The diameters and velocities were used to calculate retinal blood flow and shear rates. Mean circulation time was calculated by measuring the difference between arteriolar and venular mean transit times. Rose Bengal dye was infused, followed by illumination with a green light to induce thrombosis. RESULTS: The acute infusion of hyaluronidase and heparinase led to significant increases in both arteriolar (7%) and venular (16%) diameters in the retina, with a tendency towards increased arteriolar velocity. In addition, the degradation caused a significant decrease in the venular shear rate (14%). The enzyme infusion resulted in substantial increases in total retinal blood flow (26%) and retinal microhematocrit but no changes in the mean circulation time through the retina. We also observed an enhanced propensity for retinal thrombus formation with the removal of the glycocalyx. CONCLUSIONS: Our data suggest that acute degradation of the glycocalyx can cause significant changes in retinal hemodynamics, with increases in vessel diameter, blood flow, microhematocrit, pro-thrombotic conditions, and decreases in venular shear rate.

6.
Glycobiology ; 32(8): 720-734, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35552402

RESUMEN

INTRODUCTION: The endothelial glycocalyx regulates vascular permeability, inflammation, and coagulation, and acts as a mechanosensor. The loss of glycocalyx can cause endothelial injury and contribute to several microvascular complications and, therefore, may promote diabetic retinopathy. Studies have shown a partial loss of retinal glycocalyx in diabetes, but with few molecular details of the changes in glycosaminoglycan (GAG) composition. Therefore, the purpose of our study was to investigate the effect of hyperglycemia on GAGs of the retinal endothelial glycocalyx. METHODS: GAGs were isolated from rat retinal microvascular endothelial cells (RRMECs), media, and retinas, followed by liquid chromatography-mass spectrometry assays. Quantitative real-time polymerase chain reaction was used to study mRNA transcripts of the enzymes involved in GAG biosynthesis. RESULTS AND CONCLUSIONS: Hyperglycemia significantly increased the shedding of heparan sulfate (HS), chondroitin sulfate (CS), and hyaluronic acid (HA). There were no changes to the levels of HS in RRMEC monolayers grown in high-glucose media, but the levels of CS and HA decreased dramatically. Similarly, while HA decreased in the retinas of diabetic rats, the total GAG and CS levels increased. Hyperglycemia in RRMECs caused a significant increase in the mRNA levels of the enzymes involved in GAG biosynthesis (including EXTL-1,2,3, EXT-1,2, ChSY-1,3, and HAS-2,3), with these increases potentially being compensatory responses to overall glycocalyx loss. Both RRMECs and retinas of diabetic rats exhibited glucose-induced alterations in the disaccharide compositions and sulfation of HS and CS, with the changes in sulfation including N,6-O-sulfation on HS and 4-O-sulfation on CS.


Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Animales , Células Cultivadas , Sulfatos de Condroitina/química , Células Endoteliales , Glucosa/farmacología , Glicosaminoglicanos/química , Heparitina Sulfato/química , Ácido Hialurónico/química , ARN Mensajero/genética , Ratas , Retina
7.
Exp Eye Res ; 213: 108846, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34801534

RESUMEN

PURPOSE: Diabetic retinopathy is a vision-threatening complication of diabetes characterized by endothelial injury and vascular dysfunction. The loss of the endothelial glycocalyx, a dynamic layer lining all endothelial cells, contributes to several microvascular pathologies, including an increase in vascular permeability, leukocyte plugging, and capillary occlusion, and may drive the progression of retinopathy. Previously, a significant decrease in glycocalyx thickness has been observed in diabetic retinas. However, the effects of diabetes on specific components of the retinal glycocalyx have not yet been studied. Therefore, the aim of our study was to investigate changes in synthesis, expression, and shedding of retinal glycocalyx components induced by hyperglycemia, which could provide a novel therapeutic target for diabetic retinopathy. METHODS: Primary rat retinal microvascular endothelial cells (RRMECs) were grown under normal glucose (5 mM) or high-glucose (25 mM) conditions for 6 days. The mRNA and protein levels of the glycocalyx components were examined using qRT-PCR and Western blot analysis, respectively. Further, mass spectrometry was used to analyze protein intensities of core proteins. In addition, the streptozotocin-induced Type 1 diabetic rat model was used to study changes in the expression of the retinal glycocalyx in vivo. The shedding of the glycocalyx was studied in both culture medium and in plasma using Western blot analysis. RESULTS: A significant increase in the shedding of syndecan-1 and CD44 was observed both in vitro and in vivo under high-glucose conditions. The mRNA levels of syndecan-3 were significantly lower in the RRMECs grown under high glucose conditions, whereas those of syndecan-1, syndecan-2, syndecan-4, glypican-1, glypican-3, and CD44 were significantly higher. The protein expression of syndecan-3 and glypican-1 in RRMECs was reduced considerably following exposure to high glucose, whereas that of syndecan-1 and CD44 increased significantly. In addition, mass spectrometry data also suggests a significant increase in syndecan-4 and a significant decrease in glypican-3 protein levels with high glucose stimulation. In vivo, our data also suggest a significant decrease in the mRNA transcripts of syndecan-3 and an increase in mRNA levels of glypican-1 and CD44 in the retinas of diabetic rats. The diabetic rats exhibited a significant reduction in the retinal expression of syndecan-3 and CD44. However, the expression of syndecan-1 and glypican-1 increased significantly in the diabetic retina. CONCLUSIONS: One of the main findings of our study was the considerable diversity of glucose-induced changes in expression and shedding of various components of endothelial glycocalyx, for example, increased endothelial and retinal syndecan-1, but decreased endothelial and retinal syndecan-3. This indicates that the reported decrease in the retinal glycocalyx in diabetes in not a result of a non-specific shedding mechanism. Moreover, mRNA measurements indicated a similar diversity, with increases in endothelial and/or retinal levels of syndecan-1, glypican-1, and CD44, but a decrease for syndecan-3, with these increases in mRNA potentially a compensatory reaction to the overall loss of glycocalyx.


Asunto(s)
Retinopatía Diabética/metabolismo , Glicocálix/metabolismo , Hiperglucemia/metabolismo , Retina/metabolismo , Animales , Glucemia/metabolismo , Western Blotting , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Ensayo de Inmunoadsorción Enzimática , Glucosa/farmacología , Glipicanos/metabolismo , Receptores de Hialuranos/metabolismo , Insulina/sangre , Masculino , Espectrometría de Masas , ARN Mensajero/genética , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Vasos Retinianos/citología , Sindecanos/metabolismo
8.
Microcirculation ; 28(7): e12717, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34008903

RESUMEN

OBJECTIVE: This study aimed to investigate the role of the hyperglycemia-induced increase in tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) in the ubiquitination and degradation of platelet endothelial cell adhesion molecule-1 (PECAM-1) in the diabetic retina. METHODS: Type I diabetes was induced in rats by the injection of streptozotocin, with age-matched non-diabetic rats as controls. Primary rat retinal microvascular endothelial cells were grown in normal or high glucose media for 6 days or in normal glucose media for 24 h with addition of TNF-α and/or IFN-γ. PECAM-1, TNF-α, IFN-γ, and ubiquitin levels were assessed using Western blotting, immunofluorescence, and immunoprecipitation assays. Additionally, proteasome activity was assessed both in vivo and in vitro. RESULTS: Under hyperglycemic conditions, total ubiquitination levels in the retina and RRMECs, and PECAM-1 ubiquitination levels in RRMECs, were significantly increased. Additionally, TNF-α and IFN-γ levels were significantly increased under hyperglycemic conditions. PECAM-1 levels in RRMECs treated with TNF-α and/or IFN-γ were significantly decreased. Moreover, there was a significant decrease in proteasome activity in the diabetic retina, hyperglycemic RRMECs, and RRMECs treated with TNF-α or IFN-γ. CONCLUSION: Tumor necrosis factor-α and IFN-γ may contribute to the hyperglycemia-induced loss of PECAM-1 in retinal endothelial cells, possibly by upregulating PECAM-1 ubiquitination.


Asunto(s)
Hiperglucemia , Animales , Células Cultivadas , Células Endoteliales/metabolismo , Glucosa , Interferón gamma/farmacología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Complejo de la Endopetidasa Proteasomal , Ratas , Retina/metabolismo , Factor de Necrosis Tumoral alfa , Ubiquitinación
9.
Exp Eye Res ; 206: 108540, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33736986

RESUMEN

Central retinal artery occlusion, retinopathy, and retinal neovascularization have been reported in methamphetamine (METH) abusers. In the current study, we investigated whether METH induces retinal neovascularization in a mouse model, and if so, whether the neovascularization is associated with increased hypoxia, hypoxia-inducible factor 1α (HIF-1α), and vascular endothelial growth factor (VEGF). Mice were administrated METH by intraperitoneal injection over a 26-day period, or injected with saline as a vehicle control. The number of retinal arterioles and venules were counted using in vivo live imaging following infusion with fluorescein isothiocyanate-dextran. Excised retinas were stained with griffonia simplicifolia lectin I and flat mounted for a measurement of vascularity (length of vessels per tissue area) with AngioTool. Retinal hypoxia was examined by formation of pimonidazole adducts with an anti-pimonidazole antibody, and HIF-1α and VEGFa protein levels in the retina were detected by immunoblot. METH administration increased vascularity (including the number of arterioles) measured on Day 26. Retinal VEGFa protein level was not changed in METH-treated mice on Day 5, but was increased on Day 12 and Day 26. Hypoxia (pimonidazole adduct formation) was increased in retinas of METH-treated mice on Day 12 and Day 26, as were HIF-1α protein expression levels. These results indicate that METH administration induces hypoxia, HIF-1α, VEGFa, and angiogenesis in the retina.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/tratamiento farmacológico , Metanfetamina/farmacología , Neovascularización Retiniana/tratamiento farmacológico , Vasos Retinianos/diagnóstico por imagen , Animales , Modelos Animales de Enfermedad , Hipoxia/metabolismo , Hipoxia/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/patología , Simpatomiméticos/farmacología
10.
Pathophysiology ; 28(1): 86-97, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35366272

RESUMEN

Angiotensin II has been implicated in the progression of diabetic retinopathy, which is characterized by altered microvasculature, oxidative stress, and neuronal dysfunction. The signaling induced by angiotensin II can occur not only via receptor-mediated calcium release that causes vascular constriction, but also through a pathway whereby angiotensin II activates NADPH oxidase to elicit the formation of reactive oxygen species (ROS). In the current study, we administered the angiotensin II receptor antagonist candesartan (or vehicle, in untreated animals) in a rat model of type 1 diabetes in which hyperglycemia was induced by injection of streptozotocin (STZ). Eight weeks after the STZ injection, untreated diabetic rats were found to have a significant increase in tissue levels of angiotensin converting enzyme (ACE; p < 0.05) compared to non-diabetic controls, a 33% decrease in retinal blood flow rate (p < 0.001), and a dramatic increase in p22phox (a subunit of the NADPH oxidase). The decrease in retinal blood flow, and the increases in retinal ACE and p22phox in the diabetic rats, were all significantly attenuated (p < 0.05) by the administration of candesartan in drinking water within one week. Neither STZ nor candesartan induced any changes in tissue levels of superoxide dismutase (SOD-1), 4-hydroxynonenal (4-HNE), or nitrotyrosine. We conclude that one additional benefit of candesartan (and other angiotensin II antagonists) may be to normalize retinal blood flow, which may have clinical benefits in diabetic retinopathy.

11.
Compr Physiol ; 10(3): 933-974, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32941691

RESUMEN

In this article, we present a discussion of diabetes and its complications, including the macrovascular and microvascular effects, with the latter of consequence to the retina. We will discuss the anatomy and physiology of the retina, including aspects of metabolism and mechanisms of oxygenation, with the latter accomplished via a combination of the retinal and choroidal blood circulations. Both of these vasculatures are altered in diabetes, with the retinal circulation intimately involved in the pathology of diabetic retinopathy. The later stages of diabetic retinopathy involve poorly controlled angiogenesis that is of great concern, but in our discussion, we will focus more on several alterations in the retinal circulation occurring earlier in the progression of disease, including reductions in blood flow and a possible redistribution of perfusion that may leave some areas of the retina ischemic and hypoxic. Finally, we include in this article a more recent area of investigation regarding the diabetic retinal vasculature, that is, the alterations to the endothelial surface layer that normally plays a vital role in maintaining physiological functions. © 2020 American Physiological Society. Compr Physiol 10:933-974, 2020.


Asunto(s)
Diabetes Mellitus/fisiopatología , Retinopatía Diabética/patología , Retina/fisiopatología , Vasos Retinianos/fisiopatología , Animales , Retinopatía Diabética/etiología , Humanos , Neovascularización Patológica/fisiopatología
12.
Invest Ophthalmol Vis Sci ; 61(10): 12, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32761138

RESUMEN

Purpose: Although it is known that the retinal arteriolar vasculature is constricted in hypertension, the details of retinal hemodynamics and perfusion of the retinal circulation have yet to be adequately characterized. Methods: Male and female spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) controls were anesthetized before measurements of mean arterial blood pressure and preparation for intravital microscopy of the retinal microcirculation. Retinal vascular velocities were measured with the use of fluorescent microspheres, and diameters and mean circulation times were measured after the infusion of fluorescent dextran. Arteriolar and venular shear rates were calculated from the ratio of velocity to diameter. Results: In the retinas of SHR, velocities were elevated (compared with control WKY) in arterioles, but not in venules. Both arteriolar and venular diameters were significantly smaller in SHR versus WKY, with substantial increases in shear rates. Despite a tendency toward lower retinal blood flow rates, the mean circulation time through the SHR retina was much faster than can be explained by the measured arteriolar and venular velocities. Conclusions: The pattern of hypertension-induced increases in blood velocity, dissipating from the arteriolar to venular side of the retinal circulation, indicates a potential transfer of the extra kinetic energy through the vasculature. The combination of elevated velocities through narrower retinal arterioles resulted in a markedly higher level of wall shear rate that may induce changes in the vessel wall. Finally, significantly more rapid transits through the hypertensive retina could be a result of altered blood flow distribution.


Asunto(s)
Hipertensión/fisiopatología , Arteria Retiniana/fisiopatología , Animales , Arteriolas/fisiopatología , Tiempo de Circulación Sanguínea , Velocidad del Flujo Sanguíneo/fisiología , Presión Sanguínea/fisiología , Femenino , Colorantes Fluorescentes , Hemodinámica/fisiología , Masculino , Microcirculación , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY
13.
Exp Eye Res ; 193: 107964, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32044305

RESUMEN

Methamphetamine (METH), an addictive stimulant of neurotransmitters, is associated with cardiovascular and neurological diseases. METH-induced ophthalmic complications are also present but have been insufficiently investigated. The purpose of this study is to investigate the retinal effects of METH. C57BL/6 mice were administrated progressively increasing doses of METH (0-6 mg/kg) by repetitive intraperitoneal injections for 5 days (4 times per day). Retinal degeneration was examined by morphological changes and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling (TUNEL) assay. Norepinephrine levels were measured by ELISA, protein expression levels were determined by immunoblot and immunostaining, and gelatinase activity was examined by zymography. The thickness of the retina and the number of nuclei in the inner and outer nuclear layers were decreased by METH. Retinal cell death and astrocyte activation by METH treatment were confirmed by TUNEL assay and glial fibrillary acidic protein expression, respectively. Increased tumor necrosis factor-α protein in the retina and elevated norepinephrine levels in plasma were found in METH-treated mice. Platelet endothelial cell adhesion molecule-1 (PECAM-1) protein expression level was decreased in the retina and central retinal artery (CRA) by METH treatment, along with the endothelial proteoglycans glypican-1 and syndecan-1. Moreover, a regulator of the extracellular matrix, matrix metalloproteinase-14 (MMP-14) in the retina, and MMP-2 and MMP-9 in plasma, were increased by METH treatment. In conclusion, METH administration is involved in retinal degeneration with a vascular loss of PECAM-1 and the glycocalyx in the CRA and retina, and an increase of MMPs.


Asunto(s)
Metanfetamina/farmacocinética , Retina/patología , Arteria Retiniana/patología , Degeneración Retiniana/patología , Animales , Estimulantes del Sistema Nervioso Central/efectos adversos , Estimulantes del Sistema Nervioso Central/farmacocinética , Modelos Animales de Enfermedad , Electrorretinografía , Ensayo de Inmunoadsorción Enzimática , Immunoblotting , Etiquetado Corte-Fin in Situ , Masculino , Metanfetamina/efectos adversos , Ratones , Ratones Endogámicos C57BL , Retina/efectos de los fármacos , Arteria Retiniana/efectos de los fármacos , Degeneración Retiniana/inducido químicamente , Degeneración Retiniana/metabolismo
14.
Microcirculation ; 27(2): e12596, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31628816

RESUMEN

OBJECTIVE: Increased retinal vascular permeability is one of the earliest manifestations of diabetic retinopathy. The aim of this study was to investigate the role of hyperglycemia-induced platelet endothelial cell adhesion molecule-1 loss on retinal vascular permeability via the ß-catenin pathway. METHODS: Type I diabetes was induced in male Wistar rats using streptozotocin injections, with age-matched non-diabetic rats as controls. Rat retinal microvascular endothelial cells were grown under normal or high glucose conditions for 6 days. Small interfering Ribonucleic Acid was used to knock down platelet endothelial cell adhesion molecule-1 in rat retinal microvascular endothelial cells for loss-of-function studies. Retinas and rat retinal microvascular endothelial cells were subjected to Western blot, immunofluorescence labeling, and co-immunoprecipitation analyses to assess protein levels and interactions. A biotinylated gelatin and fluorescein isothiocyanate-avidin assay was used for retinal endothelial cell permeability studies. RESULTS: ß-catenin, ß-catenin/platelet endothelial cell adhesion molecule-1 interaction, active Src homology 2 domain-containing protein tyrosine phosphatase were significantly decreased, while ß-catenin ubiquitination levels and endothelial permeability were significantly increased, in hyperglycemic retinal endothelial cells. Similar results were observed with platelet endothelial cell adhesion molecule-1 partial knockdown, where ß-catenin and active Src homology 2 domain-containing protein tyrosine phosphatase levels were decreased, while phospho-ß-catenin and retinal endothelial cell permeability were increased. CONCLUSION: Platelet endothelial cell adhesion molecule-1 loss may contribute to increased retinal endothelial cell permeability by attenuating ß-catenin levels under hyperglycemic conditions.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Endoteliales/metabolismo , Hiperglucemia/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Proteolisis , Retina/metabolismo , Ubiquitinación , beta Catenina/metabolismo , Animales , Masculino , Ratas , Ratas Wistar
15.
Biorheology ; 56(2-3): 181-189, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30958328

RESUMEN

Diabetic retinopathy is known as a microvascular complication of hyperglycemia, with a breakdown of the blood-retinal barrier, loss of pericytes, formation of microhemorrhages, early decreases in perfusion and areas of ischemia, with the latter speculated to induce the eventual proliferative, angiogenic phase of the disease. Our animal models of diabetic retinopathy demonstrate similar decreases in retinal blood flow as seen in the early stages of diabetes in humans. Our studies also show an alteration in the retinal distribution of red blood cells, with the deep capillary layer receiving a reduced fraction, and with flow being diverted more towards the superficial vascular layer. Normal red blood cell distribution is dependent on the presence of the endothelial surface layer, specifically the glycocalyx, which has been reported to be partially lost in the diabetic retina of both humans and animals. This review addresses these two phenomena in diabetes: altered perfusion patterns and loss of the glycocalyx, with a possible connection between the two.


Asunto(s)
Barrera Hematorretinal/metabolismo , Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Flujo Sanguíneo Regional , Animales , Humanos , Flujo Sanguíneo Regional/fisiología
16.
Invest Ophthalmol Vis Sci ; 60(2): 748-760, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30793207

RESUMEN

Purpose: To test the hypothesis that high glucose and matrix metalloproteinases (MMPs) contribute to the diabetes-induced loss of platelet endothelial cell adhesion molecule-1 (PECAM-1) in the retinal microvasculature. Methods: PECAM-1 and MMP protein, activity, and interactions with PECAM-1 were assessed using western blotting, zymography, immunofluorescence, or coimmunoprecipitation assays. These assays were conducted using primary rat retinal microvascular endothelial cells (RRMECs) grown either in normal glucose (5 mM) or high glucose (25 mM) conditions and using retinas collected from streptozotocin-induced diabetic or control rats. The broad-spectrum MMP inhibitor GM6001 was administered in vivo and in vitro to ascertain the role of MMPs in the hyperglycemia-induced loss of PECAM-1. Results: A dramatic decrease in PECAM-1 (western blotting, immunofluorescence) was observed in both the diabetic retina and in hyperglycemic RRMECs. The decrease in PECAM-1 was accompanied by a significant increase in the presence and activity of matrix metalloproteinase-2 (MMP-2) (but not matrix metalloproteinase-9 [MMP-9]) in the diabetic plasma (P < 0.05) and in hyperglycemic RRMECs (P < 0.05). Moreover, RRMEC PECAM-1 significantly decreased when treated with plasma collected from diabetic rats. Several MMP-2 cleavage sites on PECAM-1 were identified using in silico analysis. Moreover, PECAM-1/MMP-2 interactions were confirmed using coimmunoprecipitation. PECAM-1 was significantly decreased in RRMECs treated with MMP-2 (P < 0.05), but became comparable to controls with the MMP inhibitor GM6001 in both the diabetic retina and hyperglycemic RRMECs. Conclusions: These results indicate a possible role of MMP-2 in hyperglycemia-induced PECAM-1 loss in retinal endothelial cells.


Asunto(s)
Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Animales , Western Blotting , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Dipéptidos/farmacología , Hiperglucemia/metabolismo , Inmunoprecipitación , Masculino , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Microscopía Fluorescente , Ratas , Ratas Wistar , Vasos Retinianos/citología , Estreptozocina
17.
Exp Eye Res ; 179: 125-131, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30445048

RESUMEN

We sought to investigate the effects of diabetes and hyaluronidase on the thickness of the endothelial glycocalyx layer in the mouse retina. In our study, the retinal circulation of diabetic Ins2(Akita) mice and their nondiabetic littermates were observed via intravital microscopy. The endothelial glycocalyx thickness was determined from the infusion of two fluorescently labeled plasma markers, one of which was a high molecular weight rhodamine dextran (MW = 155,000) excluded from the glycocalyx, and the other a more permeable low molecular weight sodium fluorescein (MW = 376). In nondiabetic C57BL/6 mice, the glycocalyx thickness also was evaluated prior to and following infusion of hyaluronidase, an enzyme that can degrade hyaluronic acid on the endothelial surface. A leakage index was used to evaluate the influence of hyaluronidase on the transport of the fluorescent tracers from the plasma into the surrounding tissue, and plasma samples were obtained to measure levels of circulating hyaluronic acid. Both diabetes and hyaluronidase infusion significantly reduced the thickness of the glycocalyx in retinal arterioles (but not in venules), and hyaluronidase increased retinal microvascular leakage of both fluorescent tracers into the surrounding tissue. However, only hyaluronidase infusion (not diabetes) increased circulating plasma levels of hyaluronic acid. In summary, our findings demonstrate that diabetes and hyaluronidase reduce the thickness of the retinal endothelial glycocalyx, in which hyaluronic acid may play a significant role in barrier function.


Asunto(s)
Diabetes Mellitus Tipo 1/fisiopatología , Retinopatía Diabética/fisiopatología , Endotelio Vascular/fisiopatología , Glicocálix/patología , Hialuronoglucosaminidasa/farmacología , Vasos Retinianos/fisiopatología , Animales , Biomarcadores/metabolismo , Barrera Hematorretinal/efectos de los fármacos , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Colorantes Fluorescentes/metabolismo , Técnicas de Genotipaje , Ácido Hialurónico/sangre , Hialuronoglucosaminidasa/sangre , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa
18.
Pathophysiology ; 24(4): 229-241, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28732591

RESUMEN

Diabetic retinopathy (DR) remains a major complication of diabetes and a leading cause of blindness among adults worldwide. DR is a progressive disease affecting both type I and type II diabetic patients at any stage of the disease, and targets the retinal microvasculature. DR results from multiple biochemical, molecular and pathophysiological changes to the retinal vasculature, which affect both microcirculatory functions and ultimately photoreceptor function. Several neural, endothelial, and support cell (e.g., pericyte) mechanisms are altered in a pathological fashion in the hyperglycemic environment during diabetes that can disturb important cell surface components in the vasculature producing the features of progressive DR pathophysiology. These include loss of the glycocalyx, blood-retinal barrier dysfunction, increased expression of inflammatory cell markers and adhesion of blood leukocytes and platelets. Included in this review is a discussion of modifications that occur at or near the surface of the retinal vascular endothelial cells, and the consequences of these alterations on the integrity of the retina.

19.
J Vis Exp ; (116)2016 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-27842359

RESUMEN

Deviations from normal levels and patterns of vascular fluid shear play important roles in vascular physiology and pathophysiology by inducing adaptive as well as pathological changes in endothelial phenotype and gene expression. In particular, maladaptive effects of periodic, unidirectional flow induced shear stress can trigger a variety of effects on several vascular cell types, particularly endothelial cells. While by now endothelial cells from diverse anatomic origins have been cultured, in-depth analyses of their responses to fluid shear have been hampered by the relative complexity of shear models (e.g., parallel plate flow chamber, cone and plate flow model). While these all represent excellent approaches, such models are technically complicated and suffer from drawbacks including relatively lengthy and complex setup time, low surface areas, requirements for pumps and pressurization often requiring sealants and gaskets, creating challenges to both maintenance of sterility and an inability to run multiple experiments. However, if higher throughput models of flow and shear were available, greater progress on vascular endothelial shear responses, particularly periodic shear research at the molecular level, might be more rapidly advanced. Here, we describe the construction and use of shear rings: a novel, simple-to-assemble, and inexpensive tissue culture model with a relatively large surface area that easily allows for a high number of experimental replicates in unidirectional, periodic shear stress studies on endothelial cells.


Asunto(s)
Células Endoteliales , Estrés Mecánico , Técnicas de Cultivo de Tejidos , Células Cultivadas , Endotelio Vascular , Humanos
20.
Pathophysiology ; 21(4): 301-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25156814

RESUMEN

Individuals with inflammatory bowel diseases (IBD) have an elevated risk of ocular inflammation. Both the anterior and posterior eye can be affected by IBD, although posterior eye dysfunction is more likely to go undetected. Little investigative attention has been directed toward the mechanisms of ocular dysfunction with IBD; however, given the prevalence of anemia in IBD and the effects of anemia on the retina, we examined the association between retinal function (electroretinography, ERG) and the anemia induced by experimental IBD, and we tested for a potential retinal benefit of acutely attenuating anemia (via red blood cell (RBC) infusion). Colitis was induced in mice in a model involving drinking water ingestion of dextran sodium sulfate (DSS), with untreated drinking water administered to controls. A subset of the DSS mice was infused with RBCs to attenuate the severity of the anemia induced by DSS. ERG signals (a-waves, b-waves, and oscillatory potential amplitudes and implicit times) were compared between the three groups of mice to evaluate retinal function. ERG amplitudes were significantly decreased in DSS mice compared to controls, with the amplitudes demonstrating a positive correlation with hematocrit, that is, the lowest ERG amplitudes were found with the most severe cases of anemia. An acute infusion of RBCs into DSS mice provided an improvement in the oscillatory potential implicit times, but no significant improvements in other ERG parameters. Despite the association between anemia and ERG signals in DSS-induced colitis, acute RBC infusion may only partially attenuate the associated retinal dysfunction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA