Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Lett ; 20(3): 20240016, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38531417

RESUMEN

Despite having a single evolutionary origin and conserved function, the mammalian placenta exhibits radical structural diversity. The evolutionary drivers and functional consequences of placental structural diversity are poorly understood. Humans and equids both display treelike placental villi, however these villi evolved independently and exhibit starkly different levels of invasiveness into maternal tissue (i.e. the number of maternal tissue layers between placental tissue and maternal blood). The villi in these species therefore serve as a compelling evolutionary case study to explore whether placentas have developed structural adaptations to respond to the challenge of reduced nutrient availability in less invasive placentas. Here, we use three-dimensional X-ray microfocus computed tomography and electron microscopy to quantitatively evaluate key structures involved in exchange in human and equid placental villi. We find that equid villi have a higher surface area to volume ratio and deeper trophoblastic vessel indentation than human villi. Using illustrative computational models, we propose that these structural adaptations have evolved in equids to boost nutrient transfer to compensate for reduced invasiveness into maternal tissue. We discuss these findings in relation to the 'maternal-fetal conflict hypothesis' of placental evolution.


Asunto(s)
Vellosidades Coriónicas , Placenta , Animales , Embarazo , Femenino , Humanos , Mamíferos
2.
J Endocrinol ; 253(3): 97-113, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35318963

RESUMEN

Steroid 5ß-reductase (AKR1D1) plays important role in hepatic bile acid synthesis and glucocorticoid clearance. Bile acids and glucocorticoids are potent metabolic regulators, but whether AKR1D1 controls metabolic phenotype in vivo is unknown. Akr1d1-/- mice were generated on a C57BL/6 background. Liquid chromatography/mass spectrometry, metabolomic and transcriptomic approaches were used to determine effects on glucocorticoid and bile acid homeostasis. Metabolic phenotypes including body weight and composition, lipid homeostasis, glucose tolerance and insulin tolerance were evaluated. Molecular changes were assessed by RNA-Seq and Western blotting. Male Akr1d1-/- mice were challenged with a high fat diet (60% kcal from fat) for 20 weeks. Akr1d1-/- mice had a sex-specific metabolic phenotype. At 30 weeks of age, male, but not female, Akr1d1-/- mice were more insulin tolerant and had reduced lipid accumulation in the liver and adipose tissue yet had hypertriglyceridemia and increased intramuscular triacylglycerol. This phenotype was associated with sexually dimorphic changes in bile acid metabolism and composition but without overt effects on circulating glucocorticoid levels or glucocorticoid-regulated gene expression in the liver. Male Akr1d1-/- mice were not protected against diet-induced obesity and insulin resistance. In conclusion, this study shows that AKR1D1 controls bile acid homeostasis in vivo and that altering its activity can affect insulin tolerance and lipid homeostasis in a sex-dependent manner.


Asunto(s)
Glucocorticoides , Oxidorreductasas , Animales , Ácidos y Sales Biliares , Dieta Alta en Grasa , Femenino , Glucocorticoides/metabolismo , Insulina/metabolismo , Lípidos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidorreductasas/genética , Fenotipo
3.
Metabol Open ; 14: 100177, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35313531

RESUMEN

Background and aims: Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver condition. It is tightly associated with an adverse metabolic phenotype (including obesity and type 2 diabetes) as well as with obstructive sleep apnoea (OSA) of which intermittent hypoxia is a critical component. Hepatic de novo lipogenesis (DNL) is a significant contributor to hepatic lipid content and the pathogenesis of NAFLD and has been proposed as a key pathway to target in the development of pharmacotherapies to treat NAFLD. Our aim is to use experimental models to investigate the impact of hypoxia on hepatic lipid metabolism independent of obesity and metabolic disease. Methods: Human and rodent studies incorporating stable isotopes and hyperinsulinaemic euglycaemic clamp studies were performed to assess the regulation of DNL and broader metabolic phenotype by intermittent hypoxia. Cell-based studies, including pharmacological and genetic manipulation of hypoxia-inducible factors (HIF), were used to examine the underlying mechanisms. Results: Hepatic DNL increased in response to acute intermittent hypoxia in humans, without alteration in glucose production or disposal. These observations were endorsed in a prolonged model of intermittent hypoxia in rodents using stable isotopic assessment of lipid metabolism. Changes in DNL were paralleled by increases in hepatic gene expression of acetyl CoA carboxylase 1 and fatty acid synthase. In human hepatoma cell lines, hypoxia increased both DNL and fatty acid uptake through HIF-1α and -2α dependent mechanisms. Conclusions: These studies provide robust evidence linking intermittent hypoxia and the regulation of DNL in both acute and sustained in vivo models of intermittent hypoxia, providing an important mechanistic link between hypoxia and NAFLD.

4.
Nat Commun ; 12(1): 3447, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103494

RESUMEN

Congenital heart disease (CHD) is the most common class of human birth defects, with a prevalence of 0.9% of births. However, two-thirds of cases have an unknown cause, and many of these are thought to be caused by in utero exposure to environmental teratogens. Here we identify a potential teratogen causing CHD in mice: maternal iron deficiency (ID). We show that maternal ID in mice causes severe cardiovascular defects in the offspring. These defects likely arise from increased retinoic acid signalling in ID embryos. The defects can be prevented by iron administration in early pregnancy. It has also been proposed that teratogen exposure may potentiate the effects of genetic predisposition to CHD through gene-environment interaction. Here we show that maternal ID increases the severity of heart and craniofacial defects in a mouse model of Down syndrome. It will be important to understand if the effects of maternal ID seen here in mice may have clinical implications for women.


Asunto(s)
Sistema Cardiovascular/embriología , Embrión de Mamíferos/patología , Deficiencias de Hierro , Animales , Aorta Torácica/anomalías , Biomarcadores/metabolismo , Diferenciación Celular , Vasos Coronarios/embriología , Vasos Coronarios/patología , Suplementos Dietéticos , Edema/patología , Embrión de Mamíferos/anomalías , Desarrollo Embrionario , Femenino , Perfilación de la Expresión Génica , Interacción Gen-Ambiente , Proteínas Fluorescentes Verdes/metabolismo , Hierro/metabolismo , Vasos Linfáticos/embriología , Vasos Linfáticos/patología , Ratones Endogámicos C57BL , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Penetrancia , Fenotipo , Embarazo , Transducción de Señal , Células Madre/patología , Transgenes , Tretinoina/metabolismo
5.
Placenta ; 104: 1-7, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33190063

RESUMEN

INTRODUCTION: Pericytes are a common feature in the placental microvasculature but their roles are not well understood. Pericytes may provide physical or endocrine support for endothelium and in some tissues mediate vasoconstriction. METHODS: This study uses serial block-face scanning electron microscopy (SBFSEM) to generate three-dimensional (3D) reconstructions of placental pericytes of the terminal villi and transmission electron microscopy (TEM) to study pericyte endothelial cell interactions. The proportion of endothelial cell junctions covered by pericytes was determined. RESULTS: The detailed 3D models of placental pericytes show pericyte structure at a new level of detail. Placental pericytes have many fingers extending from the cell body which can span multiple capillary branches. The proportion of endothelial cell-cell junctions covered by pericytes was significantly higher than pericyte coverage of capillary endothelium as a whole (endothelium: 14%, junctions: 43%, p < 0.0001). However, the proportion of endothelial cell-cell junctions covered by pericytes in regions adjacent to trophoblast was reduced compared to regions >3 µm away from trophoblast (27% vs 62% respectively, p < 0.001). No junctional complexes were observed connecting pericytes and endothelial cells but there were regions of cell membrane with features suggestive of intercellular adhesions. DISCUSSION: These data suggest that the localisation of pericytes on the villous capillary is not random but organised in relation to both endothelial junctions and the location of adjacent trophoblast. This further suggests that pericyte coverage may favour capillary permeability in regions that are most important for exchange, but limit capillary permeability in other regions.


Asunto(s)
Capilares/metabolismo , Vellosidades Coriónicas/metabolismo , Pericitos/citología , Placenta/irrigación sanguínea , Trofoblastos/citología , Actinas/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Femenino , Humanos , Microscopía Electrónica de Rastreo , Pericitos/metabolismo , Placenta/citología , Placenta/metabolismo , Embarazo , Trofoblastos/metabolismo
6.
Am J Physiol Gastrointest Liver Physiol ; 319(3): G345-G360, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32755310

RESUMEN

The pathogenesis of nonalcoholic fatty liver disease (NAFLD) and the progression to nonalcoholic steatohepatitis (NASH) and increased risk of hepatocellular carcinoma remain poorly understood. Additionally, there is increasing recognition of the extrahepatic manifestations associated with NAFLD and NASH. We demonstrate that intervention with the American lifestyle-induced obesity syndrome (ALIOS) diet in male and female mice recapitulates many of the clinical and transcriptomic features of human NAFLD and NASH. Male and female C57BL/6N mice were fed either normal chow (NC) or ALIOS from 11 to 52 wk and underwent comprehensive metabolic analysis throughout the duration of the study. From 26 wk, ALIOS-fed mice developed features of hepatic steatosis, inflammation, and fibrosis. ALIOS-fed mice also had an increased incidence of hepatic tumors at 52 wk compared with those fed NC. Hepatic transcriptomic analysis revealed alterations in multiple genes associated with inflammation and tissue repair in ALIOS-fed mice. Ingenuity Pathway Analysis confirmed dysregulation of metabolic pathways as well as those associated with liver disease and cancer. In parallel the development of a robust hepatic phenotype, ALIOS-fed mice displayed many of the extrahepatic manifestations of NAFLD, including hyperlipidemia, increased fat mass, sarcopenia, and insulin resistance. The ALIOS diet in mice recapitulates many of the clinical features of NAFLD and, therefore, represents a robust and reproducible model for investigating the pathogenesis of NAFLD and its progression.NEW & NOTEWORTHY Nonalcoholic fatty liver disease (NAFLD) affects 30% of the general population and can progress to nonalcoholic steatohepatitis (NASH) and potentially hepatocellular carcinoma. Preclinical models rely on mouse models that often display hepatic characteristics of NAFLD but rarely progress to NASH and seldom depict the multisystem effects of the disease. We have conducted comprehensive metabolic analysis of both male and female mice consuming a Western diet of trans fats and sugar, focusing on both their hepatic phenotype and extrahepatic manifestations.


Asunto(s)
Dieta Occidental/efectos adversos , Hígado Graso/genética , Estilo de Vida , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/metabolismo , Alimentación Animal , Animales , Composición Corporal , Hígado Graso/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Prueba de Tolerancia a la Glucosa , Resistencia a la Insulina , Lípidos/sangre , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Pruebas de Función Hepática , Neoplasias Hepáticas/epidemiología , Neoplasias Hepáticas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Síndrome
7.
Thyroid ; 30(6): 794-805, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32070265

RESUMEN

Background: Development of adipose tissue before birth is essential for energy storage and thermoregulation in the neonate and for cardiometabolic health in later life. Thyroid hormones are important regulators of growth and maturation in fetal tissues. Offspring hypothyroid in utero are poorly adapted to regulate body temperature at birth and are at risk of becoming obese and insulin resistant in childhood. The mechanisms by which thyroid hormones regulate the growth and development of adipose tissue in the fetus, however, are unclear. Methods: This study examined the structure, transcriptome, and protein expression of perirenal adipose tissue (PAT) in a fetal sheep model of thyroid hormone deficiency during late gestation. Proportions of unilocular (UL) (white) and multilocular (ML) (brown) adipocytes, and UL adipocyte size, were assessed by histological and stereological techniques. Changes to the adipose transcriptome were investigated by RNA sequencing and bioinformatic analysis, and proteins of interest were quantified by Western blotting. Results: Hypothyroidism in utero resulted in elevated plasma insulin and leptin concentrations and overgrowth of PAT in the fetus, specifically due to hyperplasia and hypertrophy of UL adipocytes with no change in ML adipocyte mass. RNA sequencing and genomic analyses showed that thyroid deficiency affected 34% of the genes identified in fetal adipose tissue. Enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathways were associated with adipogenic, metabolic, and thermoregulatory processes, insulin resistance, and a range of endocrine and adipocytokine signaling pathways. Adipose protein levels of signaling molecules, including phosphorylated S6-kinase (pS6K), glucose transporter isoform 4 (GLUT4), and peroxisome proliferator-activated receptor γ (PPARγ), were increased by fetal hypothyroidism. Fetal thyroid deficiency decreased uncoupling protein 1 (UCP1) protein and mRNA content, and UCP1 thermogenic capacity without any change in ML adipocyte mass. Conclusions: Growth and development of adipose tissue before birth is sensitive to thyroid hormone status in utero. Changes to the adipose transcriptome and phenotype observed in the hypothyroid fetus may have consequences for neonatal survival and the risk of obesity and metabolic dysfunction in later life.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Hipotiroidismo Congénito/metabolismo , Termogénesis/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Insulina/sangre , Leptina/sangre , PPAR gamma/metabolismo , Ovinos , Transducción de Señal/fisiología , Transcriptoma , Proteína Desacopladora 1/metabolismo
8.
J Physiol ; 595(11): 3331-3343, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28144955

RESUMEN

KEY POINTS: Thyroid hormones are important regulators of growth and maturation before birth, although the extent to which their actions are mediated by insulin and the development of pancreatic beta cell mass is unknown. Hypothyroidism in fetal sheep induced by removal of the thyroid gland caused asymmetric organ growth, increased pancreatic beta cell mass and proliferation, and was associated with increased circulating concentrations of insulin and leptin. In isolated fetal sheep islets studied in vitro, thyroid hormones inhibited beta cell proliferation in a dose-dependent manner, while high concentrations of insulin and leptin stimulated proliferation. The developing pancreatic beta cell is therefore sensitive to thyroid hormone, insulin and leptin before birth, with possible consequences for pancreatic function in fetal and later life. The findings of this study highlight the importance of thyroid hormones during pregnancy for normal development of the fetal pancreas. ABSTRACT: Development of pancreatic beta cell mass before birth is essential for normal growth of the fetus and for long-term control of carbohydrate metabolism in postnatal life. Thyroid hormones are also important regulators of fetal growth, and the present study tested the hypotheses that thyroid hormones promote beta cell proliferation in the fetal ovine pancreatic islets, and that growth retardation in hypothyroid fetal sheep is associated with reductions in pancreatic beta cell mass and circulating insulin concentration in utero. Organ growth and pancreatic islet cell proliferation and mass were examined in sheep fetuses following removal of the thyroid gland in utero. The effects of triiodothyronine (T3 ), insulin and leptin on beta cell proliferation rates were determined in isolated fetal ovine pancreatic islets in vitro. Hypothyroidism in the sheep fetus resulted in an asymmetric pattern of organ growth, pancreatic beta cell hyperplasia, and elevated plasma insulin and leptin concentrations. In pancreatic islets isolated from intact fetal sheep, beta cell proliferation in vitro was reduced by T3 in a dose-dependent manner and increased by insulin at high concentrations only. Leptin induced a bimodal response whereby beta cell proliferation was suppressed at the lowest, and increased at the highest, concentrations. Therefore, proliferation of beta cells isolated from the ovine fetal pancreas is sensitive to physiological concentrations of T3 , insulin and leptin. Alterations in these hormones may be responsible for the increased beta cell proliferation and mass observed in the hypothyroid sheep fetus and may have consequences for pancreatic function in later life.


Asunto(s)
Proliferación Celular , Enfermedades Fetales/fisiopatología , Hiperinsulinismo/fisiopatología , Hipotiroidismo/fisiopatología , Células Secretoras de Insulina/fisiología , Animales , Células Cultivadas , Femenino , Enfermedades Fetales/sangre , Hiperinsulinismo/sangre , Hiperinsulinismo/etiología , Hipotiroidismo/sangre , Hipotiroidismo/complicaciones , Insulina/sangre , Células Secretoras de Insulina/efectos de los fármacos , Leptina/sangre , Embarazo , Ovinos , Triyodotironina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...