Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Microorganisms ; 12(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38674677

RESUMEN

Growth environment greatly alters many facets of pathogen physiology, including pathogenesis and antimicrobial tolerance. The importance of host-mimicking environments for attaining an accurate picture of pathogen behaviour is widely recognised. Whilst this recognition has translated into the extensive development of artificial cystic fibrosis (CF) sputum medium, attempts to mimic the growth environment in other respiratory disease states have been completely neglected. The composition of the airway surface liquid (ASL) in different pulmonary diseases is far less well characterised than CF sputum, making it very difficult for researchers to model these infection environments. In this review, we discuss the components of human ASL, how different lung pathologies affect ASL composition, and how different pathogens interact with these components. This will provide researchers interested in mimicking different respiratory environments with the information necessary to design a host-mimicking medium, allowing for better understanding of how to treat pathogens causing infection in these environments.

2.
mSphere ; : e0010924, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578105

RESUMEN

The two species that account for most cases of Acinetobacter-associated bacteremia in the United Kingdom are Acinetobacter lwoffii, often a commensal but also an emerging pathogen, and Acinetobacter baumannii, a well-known antibiotic-resistant species. While these species both cause similar types of human infection and occupy the same niche, A. lwoffii (unlike A. baumannii) has thus far remained susceptible to antibiotics. Comparatively little is known about the biology of A. lwoffii, and this is the largest study on it conducted to date, providing valuable insights into its behaviour and potential threat to human health. This study aimed to explain the antibiotic susceptibility, virulence, and fundamental biological differences between these two species. The relative susceptibility of A. lwoffii was explained as it encoded fewer antibiotic resistance and efflux pump genes than A. baumannii (9 and 30, respectively). While both species had markers of horizontal gene transfer, A. lwoffii encoded more DNA defense systems and harbored a far more restricted range of plasmids. Furthermore, A. lwoffii displayed a reduced ability to select for antibiotic resistance mutations, form biofilm, and infect both in vivo and in in vitro models of infection. This study suggests that the emerging pathogen A. lwoffii has remained susceptible to antibiotics because mechanisms exist to make it highly selective about the DNA it acquires, and we hypothesize that the fact that it only harbors a single RND system restricts the ability to select for resistance mutations. This provides valuable insights into how development of resistance can be constrained in Gram-negative bacteria. IMPORTANCE: Acinetobacter lwoffii is often a harmless commensal but is also an emerging pathogen and is the most common cause of Acinetobacter-derived bloodstream infections in England and Wales. In contrast to the well-studied and often highly drug-resistant A. baumannii, A. lwoffii has remained susceptible to antibiotics. This study explains why this organism has not evolved resistance to antibiotics. These new insights are important to understand why and how some species develop antibiotic resistance, while others do not, and could inform future novel treatment strategies.

3.
Microbiology (Reading) ; 169(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37435775

RESUMEN

Oxymel, a combination of honey and vinegar, has been used as a remedy for wounds and infections in historical and traditional medical settings. While honey is now clinically used to treat infected wounds, this use of a complex, raw natural product (NP) mixture is unusual in modern western medicine. Research into the antimicrobial activity of NPs more usually focuses on finding a single active compound. The acetic acid in vinegar is known to have antibacterial activity at low concentrations and is in clinical use to treat burn wound infections. Here, we investigated the potential for synergistic activity of different compounds present in a complex ingredient used in historical medicine (vinegar) and in an ingredient mixture (oxymel). We conducted a systematic review to investigate published evidence for antimicrobial effects of vinegars against human pathogenic bacteria and fungi. No published studies have explicitly compared the activity of vinegar with that of a comparable concentration of acetic acid. We then characterized selected vinegars by HPLC and assessed the antibacterial and antibiofilm activity of the vinegars and acetic acid, alone and in combination with medical-grade honeys, against Pseudomonas aeruginosa and Staphylococcus aureus. We found that some vinegars have antibacterial activity that exceeds that predicted by their acetic acid content alone, but that this depends on the bacterial species being investigated and the growth conditions (media type, planktonic vs. biofilm). Pomegranate vinegars may be particularly interesting candidates for further study. We also conclude that there is potential for acetic acid, and some vinegars, to show synergistic antibiofilm activity with manuka honey.


Asunto(s)
Productos Biológicos , Miel , Humanos , Ácido Acético/farmacología , Antibacterianos/farmacología , Biopelículas
4.
Biol Psychiatry Glob Open Sci ; 3(3): 386-397, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37519460

RESUMEN

Background: Hearing impairment is a risk factor for schizophrenia. Patients with 22q11.2 deletion syndrome have a 25% to 30% risk of schizophrenia, and up to 60% also have varying degrees of hearing impairment, primarily from middle-ear inflammation. The Df1/+ mouse model of 22q11.2 deletion syndrome recapitulates many features of the human syndrome, including schizophrenia-relevant brain abnormalities and high interindividual variation in hearing ability. However, the relationship between brain abnormalities and hearing impairment in Df1/+ mice has not been examined. Methods: We measured auditory brainstem responses, cortical auditory evoked potentials, and/or cortical parvalbumin-positive (PV+) interneuron density in over 70 adult mice (32 Df1/+, 39 wild-type). We also performed longitudinal auditory brainstem response measurements in an additional 20 animals (13 Df1/+, 7 wild-type) from 3 weeks of age. Results: Electrophysiological markers of central auditory excitability were elevated in Df1/+ mice. PV+ interneurons, which are implicated in schizophrenia pathology, were reduced in density in the auditory cortex but not the secondary motor cortex. Both auditory brain abnormalities correlated with hearing impairment, which affected approximately 60% of adult Df1/+ mice and typically emerged before 6 weeks of age. Conclusions: In the Df1/+ mouse model of 22q11.2 deletion syndrome, abnormalities in central auditory excitability and auditory cortical PV+ immunoreactivity correlate with hearing impairment. This is the first demonstration of cortical PV+ interneuron abnormalities correlating with hearing impairment in a mouse model of either schizophrenia or middle-ear inflammation.

5.
Adv Healthc Mater ; 12(29): e2301961, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37522292

RESUMEN

Antimicrobial-resistant pathogens have reached alarming levels, becoming one of the most pressing global health issues. Hence, new treatments are necessary for the fight against antimicrobial resistance. Synthetic nanoengineered antimicrobial polymers (SNAPs) have emerged as a promising alternative to antimicrobial peptides, overcoming some of their limitations while keeping their key features. Herein, a library of amphiphilic oxazoline-based SNAPs using cationic ring-opening polymerization (CROP) is designed. Amphipathic compounds with 70% cationic content exhibit the highest activity against clinically relevant Staphylococcus aureus isolates, maintaining good biocompatibility in vitro and in vivo. The mechanism of action of the lead compounds against S. aureus is assessed using various microscopy techniques, indicating cell membrane disruption, while the cell wall remains unaffected. Furthermore, a potential interaction of the compounds with bacterial DNA is shown, with possible implications on bacterial division. Finally, one of the compounds exhibits high efficacy in vivo in an insect infection model.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Polímeros/farmacología , Antiinfecciosos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Bacterias , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
6.
NPJ Biofilms Microbiomes ; 9(1): 36, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291132

RESUMEN

Biofilm infections are associated with a high mortality risk for patients. Antibiotics perform poorly against biofilm communities, so high doses and prolonged treatments are often used in clinical settings. We investigated the pairwise interactions of two synthetic nano-engineered antimicrobial polymers (SNAPs). The g-D50 copolymer was synergistic with penicillin and silver sulfadiazine against planktonic Staphylococcus aureus USA300 in synthetic wound fluid. Furthermore, the combination of g-D50 and silver sulfadiazine showed a potent synergistic antibiofilm activity against S. aureus USA300 using in vitro and ex vivo wound biofilm models. The a-T50 copolymer was synergistic with colistin against planktonic Pseudomonas aeruginosa in synthetic cystic fibrosis medium, and this pair showed a potent synergistic antibiofilm activity against P. aeruginosa in an ex vivo cystic fibrosis lung model. SNAPs thus have the potential for increased antibiofilm performance in combination with certain antibiotics to shorten prolonged treatments and reduce dosages against biofilm infection.


Asunto(s)
Fibrosis Quística , Staphylococcus aureus Resistente a Meticilina , Humanos , Antibacterianos/farmacología , Staphylococcus aureus , Pseudomonas aeruginosa , Sulfadiazina de Plata , Biopelículas
8.
IEEE Trans Biomed Eng ; 70(2): 671-680, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-37021844

RESUMEN

OBJECTIVE: We have developed a single-sided magnet system that allows Magnetic Resonance relaxation and diffusion parameters to be measured. METHODS: A single-sided magnet system has been developed, using an array of permanent magnets. The magnet positions are optimised to produce a B0 magnetic field with a spot that is relatively homogenous and can project into a sample. NMR relaxometry experiments are used to measure quantitative parameters such as T2, T1 and apparent diffusion coefficient (ADC) on samples on the benchtop. To explore preclinical application, we test whether it can detect changes during acute global cerebral hypoxia in an ovine model. RESULTS: The magnet produces a 0.2 T field projected into the sample. Measurements of benchtop samples show that it can measure T1, T2 and ADC, producing trends and values that are in line with literature measurements. In-vivo studies show a decrease in T2 during cerebral hypoxia that recovers following normoxia. CONCLUSION: The single-sided MR system has the potential to allow non-invasive measurements of the brain. We also demonstrate that it can operate in a pre-clinical environment, allowing T2 to be monitored during brain tissue hypoxia. SIGNIFICANCE: MRI is a powerful technique for non-invasive diagnosis in the brain, but its application has been limited by the requirements for magnetic field strength and homogeneity that imaging methods have. The technology described in this study provides a portable alternative to acquiring clinically significant MR parameters without the need for traditional imaging equipment.


Asunto(s)
Hipoxia Encefálica , Imanes , Animales , Ovinos , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética/métodos
9.
Patterns (N Y) ; 3(12): 100632, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36569547

RESUMEN

Interdisciplinary collaboration is regarded as a desirable way of researching and, in some instances, even a requirement for academic teams and funding proposals. This paper explores the possibilities, but also the problems, of collaboration between different disciplines through a case study of the Ancientbiotics team. This team explores the potential of natural products contained in historical medical recipes. The search for clinically useful natural products in unusual places, such as historical medical practices, is a well-established endeavor in the scientific disciplines. The Ancientbiotics collaboration, largely based across UK institutions, takes this path a step forward in combining modern scientific knowledge of natural products with expertise from humanities to identify ingredient combinations. After 7 years of practice, the research has produced a variety of outcomes. This perspective will explore how the team worked within an interdisciplinary framework to advance investigation and application of historical medical recipes.

10.
Sci Rep ; 12(1): 19656, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36385621

RESUMEN

New antibiotics are urgently needed to reduce the health burden of antibiotic-resistant bacterial infection. Natural products (NPs) derived from plants and animals are a current focus of research seeking to discover new antibacterial molecules with clinical potential. A cocktail of NPs based on a medieval remedy for eye infection eliminated biofilms of several highly antibiotic-resistant bacterial species in laboratory studies, and had a promising safety profile in vitro and in a mouse model. A necessary prelude to refining this remedy into a defined, synthetic mixture suitable for testing with wound infections is to firstly establish safety when applied to healthy human skin. We aimed to assess skin-related outcomes of the preparation in a sample of healthy volunteers. This prospective, single arm, non-randomised Phase I clinical trial consisted of a single patch test intervention with 48-h follow-up. Volunteers were staff, students and members of the public recruited from the University of Warwick and surrounding locality. Adults aged 18-79 years, with no history of severe immunity-related disease, diabetes, recent infection, or known pregnancy were eligible. A 100 µl application of a filter-sterilised NP mixture, comprising ground garlic, onion, white wine and bovine bile, was applied to skin on the upper arm and covered with a dressing. The primary outcome was skin-related adverse events over 48 h. Digital photographs were captured where bothersome, salve-related events were reported. 109 volunteers, aged 18-77 years, were recruited between June and July 2021. Sample mean age was 37.6 (SD 16.1) years, and 63 (58%) participants were female. Outcome data were obtained for 106/109 (97%); two participants were lost to follow-up and one removed the skin patch after nine hours due to a bothersome garlic odour. Twenty-one (19.8%) participants reported any patch-test related sign or symptom; of these 14 (13.2%) participants reported minor events related to the salve, including itchiness, redness, or garlic odour. No serious events were reported. We found no evidence of serious skin-related adverse events related to the NP preparation.Trial registration: International Standard Randomised Controlled Trial Number (ISRCTN10773579). Date registered: 08/01/2021.


Asunto(s)
Allium , Productos Biológicos , Adulto , Humanos , Antibacterianos/efectos adversos , Productos Biológicos/efectos adversos , Voluntarios Sanos , Pomadas , Estudios Prospectivos , Adolescente , Adulto Joven , Persona de Mediana Edad , Anciano
11.
Artículo en Inglés | MEDLINE | ID: mdl-35819416

RESUMEN

Activity tests for synthetic antimicrobial compounds are often limited to the minimal inhibitory concentration assay using standard media and bacterial strains. In this study, a family of acrylamide copolymers that act as synthetic mimics of antimicrobial peptides were synthesized and shown to have a disruptive effect on bacterial membranes and structural integrity through microscopy techniques and membrane polarization experiments. The polymers were tested for their antimicrobial properties using media that mimic clinically relevant conditions. Additionally, their activity was compared in two different strains of the Gram-positive bacterium Staphylococcus aureus and the Gram-negative bacterium Pseudomonas aeruginosa. We showed that the medium composition can have an important influence on the polymer activity as there was a considerable reduction in minimal inhibitory concentrations against S. aureus grown in synthetic wound fluid (SWF), and against P. aeruginosa grown in synthetic cystic fibrosis sputum media (SCFM), compared to the concentrations in standard testing media. In contrast, we observed a complete loss of activity against P. aeruginosa in the serum-containing SWF. Finally, we made use of an emerging invertebrate in vivo model, using Galleria mellonella larvae, to assess toxicity of the polymeric antimicrobials, showing a good correlation with cell line toxicity measurements and demonstrating its potential in the evaluation of novel antimicrobial materials.

12.
Access Microbiol ; 4(3): 000336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693473

RESUMEN

Stinging nettles (Urtica spp.) have been used in a diverse range of traditional and historical medicines from around the world for the treatment of skin diseases, wounds, urinary disorders, respiratory diseases, bone and joint pain, anaemia and other circulatory problems, as well as in cosmetic preparations for skin and haircare. As part of an interdisciplinary exploration of nettle-based remedies, we performed a systematic review of published evidence for the antimicrobial activity of Urtica spp. extracts against bacteria and fungi that commonly cause skin, soft tissue and respiratory infections. We focussed on studies in which minimum inhibitory concentration (MIC) assays of U. dioica were conducted on the common bacterial opportunistic pathogens Escherichia coli , Pseudomonas aeruginosa , Klebsiella pneumoniae and Staphylococcus aureus . No studies used fresh leaves (all were dried prior to use), and no studies prepared nettles in weak acid (corresponding to vinegar) or in fats/oils, which are common combinations in historical and traditional preparations. We addressed this gap by conducting new antibacterial tests of extracts of fresh U. dioica leaves prepared in vinegar, butter or olive oil against P. aeruginosa and S. aureus . Our systematic review and additional experimental data leads us to conclude that there is no strong evidence for nettles containing molecules with clinically useful antimicrobial activity. It seems most likely that the utility of nettles in traditional topical preparations for wounds may simply be as a 'safe' absorbent medium for keeping antibacterial (vinegar) or emollient (oils) ingredients at the treatment site.

13.
MAGMA ; 35(5): 805-815, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35107697

RESUMEN

OBJECTIVE: Blood oxygenation can be measured using magnetic resonance using the paramagnetic effect of deoxy-haemoglobin, which decreases the [Formula: see text] relaxation time of blood. This [Formula: see text] contrast has been well characterised at the [Formula: see text] fields used in MRI (1.5 T and above). However, few studies have characterised this effect at lower magnetic fields. Here, the feasibility of blood oximetry at low field based on [Formula: see text] changes that are within a physiological relevant range is explored. This study could be used for specifying requirements for construction of a monitoring device based on low field permanent magnet systems. METHODS: A continuous flow circuit was used to control parameters such as oxygen saturation and temperature in a sample of blood. It flowed through a variable field magnet, where CPMG experiments were performed to measure its [Formula: see text]. In addition, the oxygen saturation was monitored by an optical sensor for comparison with the [Formula: see text] changes. RESULTS: These results show that at low [Formula: see text] fields, the change in blood [Formula: see text] due to oxygenation is small, but still detectable. The data measured at low fields are also in agreement with theoretical models for the oxy-deoxy [Formula: see text] effect. CONCLUSION: [Formula: see text] changes in blood due to oxygenation were observed at fields as low as 0.1 T. These results suggest that low field NMR relaxometry devices around 0.3 T could be designed to detect changes in blood oxygenation.


Asunto(s)
Oximetría , Saturación de Oxígeno , Imagen por Resonancia Magnética , Oxígeno
14.
Appl Environ Microbiol ; 88(3): e0178921, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-34878811

RESUMEN

Pseudomonas aeruginosa is the predominant cause of chronic biofilm infections that form in the lungs of people with cystic fibrosis (CF). These infections are highly resistant to antibiotics and persist for years in the respiratory tract. One of the main research challenges is that current laboratory models do not accurately replicate key aspects of a P. aeruginosa biofilm infection, highlighted by previous RNA-sequencing studies. We compared the P. aeruginosa PA14 transcriptome in an ex vivo pig lung (EVPL) model of CF and a well-studied synthetic cystic fibrosis sputum medium (SCFM). P. aeruginosa was grown in the EVPL model for 1, 2, and 7 days, and in vitro in SCFM for 1 and 2 days. The RNA was extracted and sequenced at each time point. Our findings demonstrate that expression of antimicrobial resistance genes was cued by growth in the EVPL model, highlighting the importance of growth environment in determining accurate resistance profiles. The EVPL model created two distinct growth environments: tissue-associated biofilm and the SCFM surrounding tissue, each cuing a transcriptome distinct from that seen in SCFM in vitro. The expression of quorum sensing associated genes in the EVPL tissue-associated biofilm at 48 h relative to in vitro SCFM was similar to CF sputum versus in vitro conditions. Hence, the EVPL model can replicate key aspects of in vivo biofilm infection that are missing from other current models. It provides a more accurate P. aeruginosa growth environment for determining antimicrobial resistance that quickly drives P. aeruginosa into a chronic-like infection phenotype. IMPORTANCE Pseudomonas aeruginosa lung infections that affect people with cystic fibrosis are resistant to most available antimicrobial treatments. The lack of a laboratory model that captures all key aspects of these infections hinders not only research progression but also clinical diagnostics. We used transcriptome analysis to demonstrate how a model using pig lungs can more accurately replicate key characteristics of P. aeruginosa lung infection, including mechanisms of antibiotic resistance and infection establishment. Therefore, this model may be used in the future to further understand infection dynamics to develop novel treatments and more accurate treatment plans. This could improve clinical outcomes as well as quality of life for individuals affected by these infections.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Perfilación de la Expresión Génica , Humanos , Pulmón , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/genética , Calidad de Vida , Porcinos
15.
F1000Res ; 10: 801, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557293

RESUMEN

The airways of people with cystic fibrosis (CF) are often chronically colonised with a diverse array of bacterial and fungal species. However, little is known about the relative partitioning of species between the planktonic and biofilm modes of growth in the airways. Existing in vivo and in vitro models of CF airway infection are ill-suited for the long-term recapitulation of mixed microbial communities. Here we describe a simple, in vitro continuous-flow model for the cultivation of polymicrobial biofilms and planktonic cultures on different substrata. Our data provide evidence for inter-species antagonism and synergism in biofilm ecology. We further show that the type of substratum on which the biofilms grow has a profound influence on their species composition. This happens without any major alteration in the composition of the surrounding steady-state planktonic community. Our experimentally-tractable model enables the systematic study of planktonic and biofilm communities under conditions that are nutritionally reminiscent of the CF airway microenvironment, something not possible using any existing in vivo models of CF airway infection.


Asunto(s)
Fibrosis Quística , Microbiota , Bacterias , Biopelículas , Humanos , Sistema Respiratorio
16.
mBio ; 12(5): e0176321, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34544277

RESUMEN

A recent workshop titled "Developing Models to Study Polymicrobial Infections," sponsored by the Dartmouth Cystic Fibrosis Center (DartCF), explored the development of new models to study the polymicrobial infections associated with the airways of persons with cystic fibrosis (CF). The workshop gathered 35+ investigators over two virtual sessions. Here, we present the findings of this workshop, summarize some of the challenges involved with developing such models, and suggest three frameworks to tackle this complex problem. The frameworks proposed here, we believe, could be generally useful in developing new model systems for other infectious diseases. Developing and validating new approaches to study the complex polymicrobial communities in the CF airway could open windows to new therapeutics to treat these recalcitrant infections, as well as uncovering organizing principles applicable to chronic polymicrobial infections more generally.


Asunto(s)
Coinfección/complicaciones , Fibrosis Quística/complicaciones , Modelos Biológicos , Infección Persistente/complicaciones , Animales , Biopelículas , Humanos , Interacciones Microbianas , Sistema Respiratorio/microbiología
17.
J Vis Exp ; (167)2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33554970

RESUMEN

The effective prescription of antibiotics for the bacterial biofilms present within the lungs of individuals with cystic fibrosis (CF) is limited by a poor correlation between antibiotic susceptibility testing (AST) results using standard diagnostic methods (e.g., broth microdilution, disk diffusion, or Etest) and clinical outcomes after antibiotic treatment. Attempts to improve AST by the use of off-the-shelf biofilm growth platforms show little improvement in results. The limited ability of in vitro biofilm systems to mimic the physicochemical environment of the CF lung and, therefore bacterial physiology and biofilm architecture, also acts as a brake on the discovery of novel therapies for CF infection. Here, we present a protocol to perform AST of CF pathogens grown as mature, in vivo-like biofilms in an ex vivo CF lung model comprised of pig bronchiolar tissue and synthetic CF sputum (ex vivo pig lung, EVPL). Several in vitro assays exist for biofilm susceptibility testing, using either standard laboratory medium or various formulations of synthetic CF sputum in microtiter plates. Both growth medium and biofilm substrate (polystyrene plate vs. bronchiolar tissue) are likely to affect biofilm antibiotic tolerance. We show enhanced tolerance of clinical Pseudomonas aeruginosa and Staphylococcus aureus isolates in the ex vivo model; the effects of antibiotic treatment of biofilms is not correlated with the minimum inhibitory concentration (MIC) in standard microdilution assays or a sensitive/resistant classification in disk diffusion assays. The ex vivo platform could be used for bespoke biofilm AST of patient samples and as an enhanced testing platform for potential antibiofilm agents during pharmaceutical research and development. Improving the prescription or acceleration of antibiofilm drug discovery through the use of more in vivo-like testing platforms could drastically improve health outcomes for individuals with CF, as well as reduce the costs of clinical treatment and discovery research.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Fibrosis Quística/microbiología , Pulmón/microbiología , Pseudomonas aeruginosa/fisiología , Staphylococcus aureus/fisiología , Animales , Biopelículas/crecimiento & desarrollo , Colistina/farmacología , Recuento de Colonia Microbiana , Disección , Floxacilina/farmacología , Humanos , Linezolid/farmacología , Pulmón/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/aislamiento & purificación , Esputo/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/aislamiento & purificación , Porcinos
19.
Microbiology (Reading) ; 167(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33186093

RESUMEN

Staphylococcus aureus is the most prevalent organism isolated from the airways of people with cystic fibrosis (CF), predominantly early in life. Yet its role in the pathology of lung disease is poorly understood. In mice, and many experiments using cell lines, the bacterium invades cells or interstitium, and forms abscesses. This is at odds with the limited available clinical data: interstitial bacteria are rare in CF biopsies and abscesses are highly unusual. Bacteria instead appear to localize in mucus plugs in the lumens of bronchioles. We show that, in an established ex vivo model of CF infection comprising porcine bronchiolar tissue and synthetic mucus, S. aureus demonstrates clinically significant characteristics including colonization of the airway lumen, with preferential localization as multicellular aggregates in mucus, initiation of a small colony variant phenotype and increased antibiotic tolerance of tissue-associated aggregates. Tissue invasion and abscesses were not observed. Our results may inform ongoing debates relating to clinical responses to S. aureus in people with CF.


Asunto(s)
Fibrosis Quística/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/crecimiento & desarrollo , Animales , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Fibrosis Quística/patología , Modelos Animales de Enfermedad , Humanos , Pulmón/microbiología , Ratones , Infecciones Estafilocócicas/patología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Porcinos
20.
Biofilm ; 2: 100024, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33381751

RESUMEN

Pseudomonas aeruginosa biofilm infections in the cystic fibrosis (CF) lung are highly resistant to current antimicrobial treatments and are associated with increased mortality rates. The existing models for such infections are not able to reliably mimic the clinical biofilms observed. We aimed to further optimise an ex vivo pig lung (EVPL) model for P. aeruginosa CF lung infection that can be used to increase understanding of chronic CF biofilm infection. The EVPL model will facilitate discovery of novel infection prevention methods and treatments, and enhanced exploration of biofilm architecture. We investigated purine metabolism and biofilm formation in the model using transposon insertion mutants in P. aeruginosa PA14 for key genes: purD, gacA and pelA. Our results demonstrate that EVPL recapitulates a key aspect of in vivo P. aeruginosa infection metabolism, and that the pathogen forms a biofilm with a clinically realistic structure not seen in other in vitro studies. Two pathways known to be required for in vivo biofilm infection - the Gac regulatory pathway and production of the Pel exopolysaccharide - are essential to the formation of this mature, structured biofilm on EVPL tissue. We propose the high-throughput EVPL model as a validated biofilm platform to bridge the gap between in vitro work and CF lung infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...