Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39272914

RESUMEN

Glioblastoma (GBM) is the most common malignant primary brain tumor, resulting in poor survival despite aggressive therapies. GBM is characterized by a highly heterogeneous and immunosuppressive tumor microenvironment (TME) made up predominantly of infiltrating peripheral immune cells. One significant immune cell type that contributes to glioma immune evasion is a population of immunosuppressive cells, termed myeloid-derived suppressor cells (MDSCs). Previous studies suggest that a subset of myeloid cells, expressing monocytic (M)-MDSC markers and dual expression of chemokine receptors CCR2 and CX3CR1, utilize CCR2 to infiltrate the TME. This study evaluated the mechanism of CCR2+/CX3CR1+ M-MDSC differentiation and T cell suppressive function in murine glioma models. We determined that bone marrow-derived CCR2+/CX3CR1+ cells adopt an immune suppressive cell phenotype when cultured with glioma-derived factors. Glioma-secreted CSF1R ligands M-CSF and IL-34 were identified as key drivers of M-MDSC differentiation while adenosine and iNOS pathways were implicated in the M-MDSC suppression of T cells. Mining a human GBM spatial RNAseq database revealed a variety of different pathways that M-MDSCs utilize to exert their suppressive function that is driven by complex niches within the microenvironment. These data provide a more comprehensive understanding of the mechanism of M-MDSCs in glioblastoma.

2.
J Control Release ; 374: 181-193, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39103055

RESUMEN

The focus of nanoparticles in vivo trafficking has been mostly on their tissue-level biodistribution and clearance. Recent progress in the nanomedicine field suggests that the targeting of nanoparticles to immune cells can be used to modulate the immune response and enhance therapeutic delivery to the diseased tissue. In the presence of tumor lesions, monocytic-myeloid-derived suppressor cells (M-MDSCs) expand significantly in the bone marrow, egress into peripheral blood, and traffic to the solid tumor, where they help maintain an immuno-suppressive tumor microenvironment. In this study, we investigated the interaction between PAMAM dendrimers and M-MDSCs in two murine models of glioblastoma, by examining the cell-level biodistribution kinetics of the systemically injected dendrimers. We found that M-MDSCs in the tumor and lymphoid organs can efficiently endocytose hydroxyl dendrimers. Interestingly, the trafficking of M-MDSCs from the bone marrow to the tumor contributed to the deposition of hydroxyl dendrimers in the tumor. M-MDSCs showed different capacities of endocytosing dendrimers of different functionalities in vivo. This differential uptake was mediated by the unique serum proteins associated with each dendrimer surface functionality. The results of this study set up the framework for developing dendrimer-based immunotherapy to target M-MDSCs for cancer treatment.


Asunto(s)
Dendrímeros , Ratones Endogámicos C57BL , Células Supresoras de Origen Mieloide , Dendrímeros/farmacocinética , Dendrímeros/química , Animales , Distribución Tisular , Células Supresoras de Origen Mieloide/metabolismo , Glioblastoma/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Línea Celular Tumoral , Ratones , Femenino , Endocitosis
3.
bioRxiv ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39185154

RESUMEN

The immune checkpoint inhibitor anti-PD-1, commonly used in cancer immunotherapy, has not been successful as a monotherapy for the highly aggressive brain cancer glioblastoma. However, when used in conjunction with a CC-chemokine receptor-2 (CCR2) antagonist, anti-PD-1 has shown efficacy in preclinical studies. In this paper, we aim to optimize treatment regimens for this combination immunotherapy using optimal control theory. We extend a treatment-free glioblastoma-immune dynamics ODE model to include interventions with anti-PD-1 and the CCR2 antagonist. An optimized regimen increases the survival of an average mouse from 32 days post-tumor implantation without treatment to 111 days with treatment. We scale this approach to a virtual murine cohort to evaluate mortality and quality of life concerns during treatment, and predict survival, tumor recurrence, or death after treatment. A parameter identifiability analysis identifies five parameters suitable for personalizing treatment within the virtual cohort. Sampling from these five practically identifiable parameters for the virtual murine cohort reveals that personalized, optimized regimens enhance survival: 84% of the virtual mice survive to day 100, compared to 60% survival in a previously studied experimental regimen. Subjects with high tumor growth rates and low T cell kill rates are identified as more likely to die during and after treatment due to their compromised immune systems and more aggressive tumors. Notably, the MDSC death rate emerges as a long-term predictor of either disease-free survival or death.

4.
bioRxiv ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38895268

RESUMEN

Glioblastoma (GBM) is the most common malignant primary brain tumor, resulting in poor survival despite aggressive therapies. GBM is characterized by a highly heterogeneous and immunosuppressive tumor microenvironment (TME) made up predominantly of infiltrating peripheral immune cells. One significant immune cell type that contributes to glioma immune evasion is a population of immunosuppressive cells, termed myeloid-derived suppressor cells (MDSCs). Previous studies suggest that a subset of myeloid cells, expressing monocytic (M)-MDSC markers and dual expression of chemokine receptors CCR2 and CX3CR1, utilize CCR2 to infiltrate the TME. This study evaluated the mechanism of CCR2+/CX3CR1+ M-MDSC differentiation and T cell suppressive function in murine glioma models. We determined that bone marrow-derived CCR2+/CX3CR1+ cells adopt an immune suppressive cell phenotype when cultured with glioma-derived factors. Glioma secreted CSF1R ligands M-CSF and IL-34 were identified as key drivers of M-MDSC differentiation while adenosine and iNOS pathways were implicated in M-MDSC suppression of T cells. Mining a human GBM spatial RNAseq database revealed a variety of different pathways that M-MDSCs utilize to exert their suppressive function that are driven by complex niches within the microenvironment. These data provide a more comprehensive understanding of the mechanism of M-MDSCs in glioblastoma.

5.
Cells ; 13(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38891070

RESUMEN

Glioblastoma (GBM) poses a significant challenge in clinical oncology due to its aggressive nature, heterogeneity, and resistance to therapies. Cancer stem cells (CSCs) play a critical role in GBM, particularly in treatment resistance and tumor relapse, emphasizing the need to comprehend the mechanisms regulating these cells. Also, their multifaceted contributions to the tumor microenvironment (TME) underline their significance, driven by their unique properties. This study aimed to characterize glioblastoma stem cells (GSCs), specifically slow-cycling cells (SCCs), in an immunocompetent murine GBM model to explore their similarities with their human counterparts. Using the KR158 mouse model, we confirmed that SCCs isolated from this model exhibited key traits and functional properties akin to human SCCs. KR158 murine SCCs, expanded in the gliomasphere assay, demonstrated sphere forming ability, self-renewing capacity, positive tumorigenicity, enhanced stemness and resistance to chemotherapy. Together, our findings validate the KR158 murine model as a framework to investigate GSCs and SCCs in GBM pathology, and explore specifically the SCC-immune system communications, understand their role in disease progression, and evaluate the effect of therapeutic strategies targeting these specific connections.


Asunto(s)
Células Madre Neoplásicas , Esferoides Celulares , Animales , Ratones , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Esferoides Celulares/patología , Humanos , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/inmunología , Glioma/patología , Glioma/inmunología , Línea Celular Tumoral , Glioblastoma/patología , Glioblastoma/inmunología , Inmunocompetencia , Microambiente Tumoral , Modelos Animales de Enfermedad , Clasificación del Tumor
6.
bioRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38496520

RESUMEN

New agents are needed that selectively kill cancer cells without harming normal tissues. The TRAIL ligand and its receptors, DR5 and DR4, exhibit cancer-selective toxicity, but TRAIL analogs or agonistic antibodies targeting these receptors have not received FDA approval for cancer therapy. Small molecules for activating DR5 or DR4 independently of protein ligands may bypass some of the pharmacological limitations of these protein drugs. Previously described Disulfide bond Disrupting Agents (DDAs) activate DR5 by altering its disulfide bonding through inhibition of the Protein Disulfide Isomerases (PDIs) ERp44, AGR2, and PDIA1. Work presented here extends these findings by showing that disruption of single DR5 disulfide bonds causes high-level DR5 expression, disulfide-mediated clustering, and activation of Caspase 8-Caspase 3 mediated pro-apoptotic signaling. Recognition of the extracellular domain of DR5 by various antibodies is strongly influenced by the pattern of DR5 disulfide bonding, which has important implications for the use of agonistic DR5 antibodies for cancer therapy. Disulfide-defective DR5 mutants do not activate the ER stress response or stimulate autophagy, indicating that these DDA-mediated responses are separable from DR5 activation and pro-apoptotic signaling. Importantly, other ER stressors, including Thapsigargin and Tunicamycin also alter DR5 disulfide bonding in various cancer cell lines and in some instances, DR5 mis-disulfide bonding is potentiated by overriding the Integrated Stress Response (ISR) with inhibitors of the PERK kinase or the ISR inhibitor ISRIB. These observations indicate that the pattern of DR5 disulfide bonding functions as a sensor of ER stress and serves as an effector of proteotoxic stress by driving extrinsic apoptosis independently of extracellular ligands.

7.
bioRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38501121

RESUMEN

Glioblastoma (GBM) poses a significant challenge in clinical oncology due to its aggressive nature, heterogeneity, and resistance to therapies. Cancer stem cells (CSCs) play a critical role in GBM, particularly in treatment-resistance and tumor relapse, emphasizing the need to comprehend the mechanisms regulating these cells. Also, their multifaceted contributions to the tumor-microenvironment (TME) underline their significance, driven by their unique properties. This study aimed to characterize glioblastoma stem cells (GSCs), specifically slow-cycling cells (SCCs), in an immunocompetent murine GBM model to explore their similarities with their human counterparts. Using the KR158 mouse model, we confirmed that SCCs isolated from this model exhibited key traits and functional properties akin to human SCCs. KR158 murine SCCs, expanded in the gliomasphere assay, demonstrated sphere forming ability, self-renewing capacity, positive tumorigenicity, enhanced stemness and resistance to chemotherapy. Together, our findings validate the KR158 murine model as a framework to investigate GSCs and SCCs in GBM-pathology, and explore specifically the SCC-immune system communications, understand their role in disease progression, and evaluate the effect of therapeutic strategies targeting these specific connections.

8.
J Math Biol ; 88(1): 10, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099947

RESUMEN

Glioblastoma (GBM) is an aggressive primary brain cancer that currently has minimally effective treatments. Like other cancers, immunosuppression by the PD-L1-PD-1 immune checkpoint complex is a prominent axis by which glioma cells evade the immune system. Myeloid-derived suppressor cells (MDSCs), which are recruited to the glioma microenviroment, also contribute to the immunosuppressed GBM microenvironment by suppressing T cell functions. In this paper, we propose a GBM-specific tumor-immune ordinary differential equations model of glioma cells, T cells, and MDSCs to provide theoretical insights into the interactions between these cells. Equilibrium and stability analysis indicates that there are unique tumorous and tumor-free equilibria which are locally stable under certain conditions. Further, the tumor-free equilibrium is globally stable when T cell activation and the tumor kill rate by T cells overcome tumor growth, T cell inhibition by PD-L1-PD-1 and MDSCs, and the T cell death rate. Bifurcation analysis suggests that a treatment plan that includes surgical resection and therapeutics targeting immune suppression caused by the PD-L1-PD1 complex and MDSCs results in the system tending to the tumor-free equilibrium. Using a set of preclinical experimental data, we implement the approximate Bayesian computation (ABC) rejection method to construct probability density distributions that estimate model parameters. These distributions inform an appropriate search curve for global sensitivity analysis using the extended fourier amplitude sensitivity test. Sensitivity results combined with the ABC method suggest that parameter interaction is occurring between the drivers of tumor burden, which are the tumor growth rate and carrying capacity as well as the tumor kill rate by T cells, and the two modeled forms of immunosuppression, PD-L1-PD-1 immune checkpoint and MDSC suppression of T cells. Thus, treatment with an immune checkpoint inhibitor in combination with a therapeutic targeting the inhibitory mechanisms of MDSCs should be explored.


Asunto(s)
Glioblastoma , Glioma , Células Supresoras de Origen Mieloide , Humanos , Glioblastoma/terapia , Receptor de Muerte Celular Programada 1 , Antígeno B7-H1 , Teorema de Bayes , Microambiente Tumoral
9.
Brain Sci ; 12(7)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35884700

RESUMEN

Glioblastoma is the most aggressive brain cancer and is highly infiltrated with cells of myeloid lineage (TIM) that support tumor growth and invasion. Tumor resection is the primary treatment for glioblastoma; however, the activation state of TIM at the site of tumor resection and its impact on glioma regrowth are poorly understood. Using the C57BL/6/GL261 mouse glioma implantation model, we investigated the state of TIM in the tumor resection area during the post-surgical period. TIM isolated from brain tissue at the resection site were analyzed at 0, 1, 4, 7, 14, and 21 days after tumor resection. An increase in expression of CD86 during the first 7 days after surgical resection and then upregulation of arginase 1 from the 14th to 21st days after resection were detected. Cytokine expression analysis combined with qRT-PCR revealed sustained upregulation of IL4, IL5, IL10, IL12, IL17, vascular endothelial growth factor (VEGF), and monocyte chemoattractant protein 1 (MCP1/CCL2) in TIM purified from regrown tumors compared with primary implanted tumors. Flow cytometry analysis revealed increased CD86+/CD206+ population in regrown tumors compared with primary implanted tumors. Overall, we found that TIM in primary implanted tumors and tumors regrown after resection exhibited different phenotypes and cytokine expression patterns.

10.
Front Immunol ; 13: 993444, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685592

RESUMEN

Glioblastoma (GBM) is the most common and malignant primary brain tumor, resulting in poor survival despite aggressive therapies. GBM is characterized in part by a highly heterogeneous and immunosuppressive tumor microenvironment (TME) made up predominantly of infiltrating peripheral immune cells. One significant immune cell type that contributes to glioma immune evasion is a population of immunosuppressive, hematopoietic cells, termed myeloid-derived suppressor cells (MDSCs). Previous studies suggest that a potent subset of myeloid cells, expressing monocytic (M)-MDSC markers, distinguished by dual expression of chemokine receptors CCR2 and CX3CR1, utilize CCR2 to infiltrate into the TME. This study evaluated the T cell suppressive function and migratory properties of CCR2+/CX3CR1+ MDSCs. Bone marrow-derived CCR2+/CX3CR1+ cells adopt an immune suppressive cell phenotype when cultured with glioma-derived factors. Recombinant and glioma-derived CCL2 and CCL7 induce the migration of CCR2+/CX3CR1+ MDSCs with similar efficacy. KR158B-CCL2 and -CCL7 knockdown murine gliomas contain equivalent percentages of CCR2+/CX3CR1+ MDSCs compared to KR158B gliomas. Combined neutralization of CCL2 and CCL7 completely blocks CCR2-expressing cell migration to KR158B cell conditioned media. CCR2+/CX3CR1+ cells are also reduced within KR158B gliomas upon combination targeting of CCL2 and CCL7. High levels of CCL2 and CCL7 are also associated with negative prognostic outcomes in GBM patients. These data provide a more comprehensive understanding of the function of CCR2+/CX3CR1+ MDSCs and the role of CCL2 and CCL7 in the recruitment of these immune suppressive cells and further support the significance of targeting this chemokine axis in GBM.


Asunto(s)
Glioblastoma , Glioma , Células Supresoras de Origen Mieloide , Animales , Ratones , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL7/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo , Glioblastoma/patología , Monocitos/metabolismo , Células Supresoras de Origen Mieloide/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Microambiente Tumoral
11.
Pharmacol Ther ; 222: 107790, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33316289

RESUMEN

Chemokines are a large subfamily of cytokines known for their ability to facilitate cell migration, most notably leukocytes, throughout the body. Chemokines are necessary for a functioning immune system in both health and disease and have received considerable attention for their roles in orchestrating temporal-spatial regulation of immune cell populations in cancer. Gliomas comprise a group of common central nervous system (CNS) primary tumors that are extremely challenging to treat. Immunotherapy approaches for highly malignant brain tumors offer an exciting new avenue for therapeutic intervention but so far, have seen limited successful clinical outcomes. Herein we focus on important chemokine/chemokine receptor systems in the regulation of pro- and anti-tumor mechanisms, highlighting potential therapeutic advantages of modulating these systems in malignant gliomas and other cancers.


Asunto(s)
Quimiocinas , Glioma , Receptores de Quimiocina , Quimiocinas/efectos de los fármacos , Quimiocinas/metabolismo , Glioma/tratamiento farmacológico , Humanos , Receptores de Quimiocina/efectos de los fármacos , Receptores de Quimiocina/metabolismo
12.
Neuro Oncol ; 22(9): 1249-1261, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32391559

RESUMEN

In oncology, "immunotherapy" is a broad term encompassing multiple means of utilizing the patient's immune system to combat malignancy. Prominent among these are immune checkpoint inhibitors, cellular therapies including chimeric antigen receptor T-cell therapy, vaccines, and oncolytic viruses. Immunotherapy for glioblastoma (GBM) has had mixed results in early trials. In this context, the past, present, and future of immune oncology for the treatment of GBM was discussed by clinical, research, and thought leaders as well as patient advocates at the first annual Remission Summit in 2019. The goal was to use current knowledge (published and unpublished) to identify possible causes of treatment failures and the best strategies to advance immunotherapy as a treatment modality for patients with GBM. The discussion focuses on past failures, current limitations, failure analyses, and proposed best practices moving forward.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Virus Oncolíticos , Adulto , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Humanos , Inmunoterapia
13.
Proc Natl Acad Sci U S A ; 117(2): 1129-1138, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31879345

RESUMEN

Immunotherapy directed at the PD-L1/PD-1 axis has produced treatment advances in various human cancers. Unfortunately, progress has not extended to glioblastoma (GBM), with phase III clinical trials assessing anti-PD-1 monotherapy failing to show efficacy in newly diagnosed and recurrent tumors. Myeloid-derived suppressor cells (MDSCs), a subset of immunosuppressive myeloid derived cells, are known to infiltrate the tumor microenvironment of GBM. Growing evidence suggests the CCL2-CCR2 axis is important for this process. This study evaluated the combination of PD-1 blockade and CCR2 inhibition in anti-PD-1-resistant gliomas. CCR2 deficiency unmasked an anti-PD-1 survival benefit in KR158 glioma-bearing mice. CD11b+/Ly6Chi/PD-L1+ MDSCs within established gliomas decreased with a concomitant increase in overall CCR2+ cells and MDSCs within bone marrow of CCR2-deficient mice. The CCR2 antagonist CCX872 increased median survival as a monotherapy in KR158 glioma-bearing animals and further increased median and overall survival when combined with anti-PD-1. Additionally, combination of CCX872 and anti-PD-1 prolonged median survival time in 005 GSC GBM-bearing mice. In both models, CCX872 decreased tumor associated MDSCs and increased these cells within the bone marrow. Examination of tumor-infiltrating lymphocytes revealed an elevated population, increased IFNγ expression, indicating enhanced cytolytic activity, as well as decreased expression of exhaustion markers in CD4+ and CD8+ T cells following combination treatment. These data establish that combining CCR2 and PD-1 blockade extends survival in clinically relevant murine glioma models and provides the basis on which to advance this combinatorial treatment toward early-phase human trials.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Glioma/tratamiento farmacológico , Células Mieloides/metabolismo , Receptores CCR2/efectos de los fármacos , Receptores CCR2/metabolismo , Animales , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Quimiocina CCL2 , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioma/patología , Humanos , Inmunoterapia , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/efectos de los fármacos , Células Supresoras de Origen Mieloide/metabolismo , Receptor de Muerte Celular Programada 1 , Receptores CCR2/genética , Análisis de Supervivencia , Microambiente Tumoral/efectos de los fármacos
16.
J Mol Med (Berl) ; 94(11): 1255-1265, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27344677

RESUMEN

In this study, the role of CX3CR1 in the progression of diabetic retinopathy (DR) was investigated. The retinas of wild-type (WT), CX3CR1 null (CX3CR1gfp/gfp, KO), and heterozygous (CX3CR1+/gfp, Het) mice were compared in the presence and absence of streptozotocin (STZ)-induced diabetes. CX3CR1 deficiency in STZ-KO increased vascular pathology at 4 months of diabetes, as a significant increase in acellular capillaries was observed only in the STZ-KO group. CX3CR1 deficiency and diabetes had similar effects on retinal neurodegeneration measured by an increase in DNA fragmentation. Retinal vascular pathology in STZ-KO mice was associated with increased numbers of monocyte-derived macrophages in the retina. Furthermore, compared to STZ-WT, STZ-KO mice exhibited increased numbers of inflammatory monocytes in the bone marrow and impaired homing of monocytes to the spleen. The induction of retinal IL-10 expression by diabetes was significantly less in KO mice, and when bone marrow-derived macrophages from KO mice were maintained in high glucose, they expressed significantly less IL-10 and more TNF-α in response to LPS stimulation. These findings support that CX3CR1 deficiency accelerates the development of vascular pathology in DR through increased recruitment of proinflammatory myeloid cells that demonstrate reduced expression of anti-inflammatory IL-10. KEY MESSAGES: • CX3CR1 deletion in STZ-diabetic mice accelerated the onset of diabetic retinopathy (DR). • The early onset of DR was associated with increased retinal cell apoptosis. • The early onset of DR was associated with increased recruitment of bone marrow-derived macrophages to the retina. • Bone marrow-derived macrophages from CX3CR1 KO diabetic mice expressed more TNF-α and less IL-10. • The role of IL-10 in protection from progression of DR is highlighted.


Asunto(s)
Receptor 1 de Quimiocinas CX3C/deficiencia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Animales , Apoptosis , Peso Corporal , Células de la Médula Ósea/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo , Modelos Animales de Enfermedad , Eliminación de Gen , Hemoglobina Glucada/metabolismo , Homeostasis , Hipotálamo/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Interleucina-10/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/metabolismo , Células Mieloides/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Retina/metabolismo , Retina/patología , Estreptozocina
17.
Hypertension ; 67(3): 574-84, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26781279

RESUMEN

Emerging evidence indicates that differentiation and mobilization of hematopoietic cell are critical in the development and establishment of hypertension and hypertension-linked vascular pathophysiology. This, coupled with the intimate involvement of the hyperactive renin-angiotensin system in hypertension, led us to investigate the hypothesis that chronic angiotensin II (Ang II) infusion affects hematopoietic stem cell (HSC) regulation at the level of the bone marrow. Ang II infusion resulted in increases in hematopoietic stem/progenitor cells (83%) and long-term HSC (207%) in the bone marrow. Interestingly, increases of HSCs and long-term HSCs were more pronounced in the spleen (228% and 1117%, respectively). Furthermore, we observed higher expression of C-C chemokine receptor type 2 in these HSCs, indicating there was increased myeloid differentiation in Ang II-infused mice. This was associated with accumulation of C-C chemokine receptor type 2(+) proinflammatory monocytes in the spleen. In contrast, decreased engraftment efficiency of GFP(+) HSC was observed after Ang II infusion. Time-lapse in vivo imaging and in vitro Ang II pretreatment demonstrated that Ang II induces untimely proliferation and differentiation of the donor HSC resulting in diminished HSC engraftment and bone marrow reconstitution. We conclude that (1) chronic Ang II infusion regulates HSC proliferation, mediated by angiotensin receptor type 1a, (2) Ang II accelerates HSC to myeloid differentiation resulting in accumulation of C-C chemokine receptor type 2(+) HSCs and inflammatory monocytes in the spleen, and (3) Ang II impairs homing and reconstitution potentials of the donor HSCs. These observations highlight the important regulatory roles of Ang II on HSC proliferation, differentiation, and engraftment.


Asunto(s)
Angiotensina II/metabolismo , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/citología , Hipertensión/patología , Animales , Diferenciación Celular , Proliferación Celular , Modelos Animales de Enfermedad , Hipertensión/fisiopatología , Hipertensión/terapia , Masculino , Ratones , Ratones Endogámicos BALB C , Grabación en Video
18.
PLoS One ; 10(6): e0131059, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26098895

RESUMEN

Glioblastoma is one of the most aggressive and fatal brain cancers due to the highly invasive nature of glioma cells. Microglia infiltrate most glioma tumors and, therefore, make up an important component of the glioma microenvironment. In the tumor environment, microglia release factors that lead to the degradation of the extracellular matrix and stimulate signaling pathways to promote glioma cell invasion. In the present study, we demonstrated that microglia can promote glioma migration through a mechanism independent of extracellular matrix degradation. Using western blot analysis, we found upregulation of proline rich tyrosine kinase 2 (Pyk2) protein phosphorylated at Tyr579/580 in glioma cells treated with microglia conditioned medium. This upregulation occurred in rodent C6 and GL261 as well as in human glioma cell lines with varying levels of invasiveness (U-87MG, A172, and HS683). siRNA knock-down of Pyk2 protein and pharmacological blockade by the Pyk2/focal-adhesion kinase (FAK) inhibitor PF-562,271 reversed the stimulatory effect of microglia on glioma migration in all cell lines. A lower concentration of PF-562,271 that selectively inhibits FAK, but not Pyk2, did not have any effect on glioma cell migration. Moreover, with the use of the CD11b-HSVTK microglia ablation mouse model we demonstrated that elimination of microglia in the implanted tumors (GL261 glioma cells were used for brain implantation) by the local in-tumor administration of Ganciclovir, significantly reduced the phosphorylation of Pyk2 at Tyr579/580 in implanted tumor cells. Taken together, these data indicate that microglial cells activate glioma cell migration/dispersal through the pro-migratory Pyk2 signaling pathway in glioma cells.


Asunto(s)
Neoplasias Encefálicas/fisiopatología , Quinasa 2 de Adhesión Focal/fisiología , Glioma/fisiopatología , Microglía/fisiología , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular/fisiología , Quinasa 2 de Adhesión Focal/antagonistas & inhibidores , Quinasa 2 de Adhesión Focal/genética , Técnicas de Silenciamiento del Gen , Glioma/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/patología , Invasividad Neoplásica/patología , Invasividad Neoplásica/fisiopatología , Ratas , Transducción de Señal/fisiología , Microambiente Tumoral/fisiología , Regulación hacia Arriba
19.
Cancer Lett ; 360(1): 60-7, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25676691

RESUMEN

The failure of standard treatment for patients diagnosed with glioblastoma (GBM) coupled with the highly vascularized nature of this solid tumor has led to the consideration of agents targeting VEGF or VEGFRs, as alternative therapeutic strategies for this disease. Despite modest achievements in survival obtained with such treatments, failure to maintain an enduring survival benefit and more invasive relapsing tumors are evident. Our study suggests a potential mechanism by which anti-VEGF/VEGFR therapies regulate the enhanced invasive phenotype through a pathway that involves TGFßR and CXCR4. VEGFR signaling inhibitors (Cediranib and Vandetanib) elevated the expression of CXCR4 in VEGFR-expressing GBM cell lines and tumors, and enhanced the in vitro migration of these lines toward CXCL12. The combination of VEGFR inhibitor and CXCR4 antagonist provided a greater survival benefit to tumor-bearing animals. The upregulation of CXCR4 by VEGFR inhibitors was dependent on TGFß/TGFßR, but not HGF/MET, signaling activity, suggesting a mechanism of crosstalk among VEGF/VEGFR, TGFß/TGFßR, and CXCL12/CXCR4 pathways in the malignant phenotype of recurrent tumors after anti-VEGF/VEGFR therapies. Thus, the combination of VEGFR, CXCR4, and TGFßR inhibitors could provide an alternative strategy to halt GBM progression.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Piperidinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Receptores CXCR4/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Adulto , Anciano , Animales , Bencilaminas , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Ciclamas , Femenino , Glioblastoma/enzimología , Glioblastoma/genética , Glioblastoma/patología , Compuestos Heterocíclicos/farmacología , Humanos , Subunidad alfa del Receptor de Interleucina-2/deficiencia , Subunidad alfa del Receptor de Interleucina-2/genética , Masculino , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Persona de Mediana Edad , Invasividad Neoplásica , Receptor Cross-Talk/efectos de los fármacos , Receptores CXCR4/antagonistas & inhibidores , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Factores de Tiempo , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
20.
PLoS One ; 9(6): e99927, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24927123

RESUMEN

While rapamycin and the "rapalogs" Everolimus and Temsirolimus have been approved for clinical use in the treatment of a number of forms of cancer, they have not met overarching success. Some tumors are largely refractory to rapamycin treatment, with some even undergoing an increase in growth rates. However the mechanisms by which this occurs are largely unknown. The results presented here reveal novel cell-signaling mechanisms that may lead to this resistance. The absence of TGFß signaling results in resistance to rapamycin. Additionally, we observed that treatment of some cancer cell lines with rapamycin and its analogs not only potentiates mitogenic signaling and proliferation induced by HGF, but also stimulates the pro-survival kinase Akt. Together, the data show that the effectiveness of rapamycin treatment can be influenced by a number of factors and bring to light potential biomarkers for the prediction of responsiveness to treatment, and suggest combination therapies to optimize rapalog anticancer efficacy.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Citostáticos/farmacología , Sirolimus/farmacología , Antibióticos Antineoplásicos/farmacología , Línea Celular Tumoral , Everolimus , Humanos , Transducción de Señal/efectos de los fármacos , Sirolimus/análogos & derivados , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA