Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Proteome Res ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814071

RESUMEN

Investigating snake venom is necessary for developing new treatments for envenoming and harnessing the therapeutic potential that lies within venom toxins. Despite considerable efforts in previous research, several technical challenges remain for characterizing the individual components within such complex mixtures. Here, we present native and top-down mass spectrometry (MS) workflows that enable the analysis of individual venom proteins within complex mixtures and showcase the utility of these methodologies on King cobra (Ophiophagus hannah) venom. First, we coupled ion mobility spectrometry for separation and electron capture dissociation for charge reduction to resolve highly convoluted mass spectra containing multiple proteins with masses ranging from 55 to 127 kDa. Next, we performed a top-down glycomic analysis of a 25.5 kDa toxin, showing that this protein contains a fucosylated complex glycan. Finally, temperature-controlled nanoelectrospray mass spectrometry facilitated the top-down sequence analysis of a ß-cardiotoxin, which cannot be fragmented by collisional energy due to its disulfide bond pattern. The work presented here demonstrates the applicability of new and promising MS methods for snake venom analysis.

2.
Anal Chem ; 95(38): 14384-14391, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37699589

RESUMEN

DNA three-way junction (TWJ) structures transiently form during key cellular processes such as transcription, replication, and DNA repair. Despite their significance, the thermodynamics of TWJs, including the influence of strand length, base pair composition, and ligand binding on TWJ stability and dissociation mechanisms, are poorly understood. To address these questions, we interfaced temperature-controlled nanoelectrospray ionization mass spectrometry (TC-nESI-MS) with a cyclic ion mobility spectrometry (cIMS) instrument that was also equipped with a surface-induced dissociation (SID) stage. This novel combination allowed us to investigate the structural intermediates of three TWJ complexes and examine the effects of GC base pairs on their dissociation pathways. We found that two TWJ-specific ligands, 2,7-tris-naphthalene (2,7-TrisNP) and tris-phenoxybenzene (TrisPOB), lead to TWJ stabilization, revealed by an increase in the melting temperature (Tm) by 13 or 26 °C, respectively. To gain insights into conformational changes in the gas phase, we employed cIMS and SID to analyze TWJs and their complexes with ligands. Analysis of IM arrival distributions suggested a single-step dissociation of TWJs and their intermediates for the three studied TWJ complexes. Upon ligand binding, a higher SID energy by 3 V (2,7-TrisNP) and 5 V (TrisPOB) was required to induce 50% dissociation of TWJ, compared to 38 V in the absence of ligands. Our results demonstrate the power of utilizing TC-nESI-MS in combination with cIMS and SID for thermodynamic characterization of TWJ complexes and investigation of ligand binding. These techniques are essential for the TWJ design and development as drug targets, aptamers, and structural units for functional biomaterials.


Asunto(s)
ADN , Espectrometría de Masa por Ionización de Electrospray , Temperatura , Ligandos , Termodinámica
3.
Anal Chim Acta ; 1272: 341306, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37355315

RESUMEN

BACKGROUND: Brazil is home to a multitude of venomous snakes; perhaps the most medically relevant of which belong to the Bothrops genus. Bothrops spp. are responsible for roughly 70% of all snakebites in Brazil, and envenomings caused by their bites can be treated with three types of antivenom: bothropic antivenom, bothro-lachetic antivenom, and bothro-crotalic antivenom. The choice to administer antivenom depends on the severity of the envenoming, while the choice of antivenom depends on availability and on how certain the treating physician is that the patient was bitten by a bothropic snake. The diagnosis of a bothropic envenoming can be made based on expert identification of the dead snake or a photo thereof or based on a syndromic approach wherein the clinician examines the patient for characteristic manifestations of envenoming. This approach can be very effective but requires staff that has been trained in clinical snakebite management, which, unfortunately, far from all relevant staff has. RESULTS: In this article, we describe a prototype of the first lateral flow assay (LFA) capable of detecting venoms from Brazilian Bothrops spp. The monoclonal antibodies for the assay were generated using hybridoma technology and screened in sandwich enzyme-linked immunosorbent assays (ELISAs) to identify Bothrops spp.-specific antibody sandwich pairs. The prototype LFA is able to detect venom from several Bothrops spp. The LFA has a limit of detection (LoD) of 9.5 ng/mL in urine, when read with a commercial reader, and a visual LoD of approximately 25 ng/mL. SIGNIFICANCE: The work presented here serves as a proof of concept for a genus-specific venom detection kit that could support physicians in diagnosing Bothrops envenomings. Although further optimisation and testing is needed before the LFA can find clinical use, such a device could aid in decentralising antivenoms in the Brazilian Amazon and help ensure optimal snakebite management for even more victims of this highly neglected disease.


Asunto(s)
Bothrops , Venenos de Crotálidos , Mordeduras de Serpientes , Animales , Mordeduras de Serpientes/diagnóstico , Mordeduras de Serpientes/tratamiento farmacológico , Antivenenos/uso terapéutico , Venenos de Crotálidos/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico
4.
Nat Commun ; 14(1): 2913, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217470

RESUMEN

Mass spectrometry is a powerful technique for the structural and functional characterization of biomolecules. However, it remains challenging to accurately gauge the gas-phase structure of biomolecular ions and assess to what extent native-like structures are maintained. Here we propose a synergistic approach which utilizes Förster resonance energy transfer and two types of ion mobility spectrometry (i.e., traveling wave and differential) to provide multiple constraints (i.e., shape and intramolecular distance) for structure-refinement of gas-phase ions. We add microsolvation calculations to assess the interaction sites and energies between the biomolecular ions and gaseous additives. This combined strategy is employed to distinguish conformers and understand the gas-phase structures of two isomeric α-helical peptides that might differ in helicity. Our work allows more stringent structural characterization of biologically relevant molecules (e.g., peptide drugs) and large biomolecular ions than using only a single structural methodology in the gas phase.


Asunto(s)
Gases , Péptidos , Péptidos/química , Espectrometría de Masas/métodos , Gases/química , Iones/química , Conformación Proteica en Hélice alfa
5.
J Am Soc Mass Spectrom ; 34(5): 922-930, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37016495

RESUMEN

Phospholipases have diverse roles in lipid and cell membrane biology. In animal venoms, they can have roles as neurotoxins or myotoxins that disrupt the integrity of cell membranes. In this work, we describe a temperature-controlled, continuous electrospray ionization mass spectrometry (ESI-MS) assay for measuring phospholipase A2 activity against liposomes. The enzyme used in this assay was paradoxin, which is a neurotoxic trimeric phospholipase A2 from inland taipan snake venom. Previously developed ESI-MS-based phospholipase assays have been discontinuous and analyzed hydrolysis of single lipid molecules by liquid chromatography ESI-MS. In this work, a continuous assay was developed against liposomes, a more complex substrate that more closely reflects the natural substrate for paradoxin. The assay confirmed the requirement for Ca2+ and allowed measurement of Michaelis-Menten-type parameters. The use of ESI-MS for lipid detection enabled nuanced insights into the effect of changing assay conditions not only on the enzyme but also on the liposome substrate. Changing the metal ion concentrations did not significantly change the liposomes but did affect enzymatic activity. Increasing temperature did not substantially affect the secondary structure of paradoxin but affected liposome size, resulting in increased enzymatic activity consistent with the disruption of the phosphatidylcholine membrane, increasing accessibility of sn-2 ester bonds. The continuous ESI-MS method described herein can be applied to other enzyme reactions, particularly those which utilize complex lipid substrates.


Asunto(s)
Liposomas , Espectrometría de Masa por Ionización de Electrospray , Animales , Liposomas/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Fosfolipasas A2/química , Fosfolipasas , Fosfatidilcolinas
6.
Nat Commun ; 14(1): 682, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755049

RESUMEN

Snakebite envenoming continues to claim many lives across the globe, necessitating the development of improved therapies. To this end, broadly-neutralizing human monoclonal antibodies may possess advantages over current plasma-derived antivenoms by offering superior safety and high neutralization capacity. Here, we report the establishment of a pipeline based on phage display technology for the discovery and optimization of high affinity broadly-neutralizing human monoclonal antibodies. This approach yielded a recombinant human antibody with superior broadly-neutralizing capacities in vitro and in vivo against different long-chain α-neurotoxins from elapid snakes. This antibody prevents lethality induced by Naja kaouthia whole venom at an unprecedented low molar ratio of one antibody per toxin and prolongs the survival of mice injected with Dendroaspis polylepis or Ophiophagus hannah whole venoms.


Asunto(s)
Venenos Elapídicos , Neurotoxinas , Humanos , Animales , Ratones , Anticuerpos ampliamente neutralizantes , Elapidae , Antivenenos , Anticuerpos Monoclonales
7.
Anal Chem ; 94(36): 12435-12443, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36049221

RESUMEN

Native mass spectrometry is a powerful tool for the analysis of noncovalent complexes. When coupled with high-resolution ion mobility, this technique can be used to investigate the conformational changes induced in said complexes by different solution or gas-phase conditions. In this study, we describe how a new-generation high-resolution ion mobility instrument equipped with a cyclic ion mobility cell can be utilized for the analysis of large biomolecular systems, including temperature-induced protein aggregates of masses greater than 1.5 MDa, as well as a 63 kDa oligonucleotide complex. The effects of and the interplay between the voltages applied to the different components of the cyclic ion mobility spectrometry system on ion transmission and arrival time distribution were demonstrated using biomolecules covering the m/z range 2000-10,000. These data were used to establish a theoretical framework for achieving the best separation in the cyclic ion mobility system. Finally, the cyclic ion mobility mass spectrometer was coupled with a temperature-controlled electrospray ionization source to investigate high-mass protein aggregation. This analysis showed that it was possible to continuously monitor the change in abundance for several conformations of MDa aggregates with increasing temperature. This work significantly increases the range of biomolecules that can be analyzed by both cyclic ion mobility and temperature-controlled electrospray ionization mass spectrometry, providing new possibilities for high-resolution ion mobility analysis.


Asunto(s)
Espectrometría de Movilidad Iónica , Agregado de Proteínas , Conformación Molecular , Proteínas/química , Espectrometría de Masa por Ionización de Electrospray/métodos
8.
J Am Chem Soc ; 144(32): 14441-14445, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35943275

RESUMEN

Native mass spectrometry has emerged as an important tool for gas-phase structural biology. However, the conformations that a biomolecular ion adopts in the gas phase can differ from those found in solution. Herein, we report a synergistic, native ion mobility-mass spectrometry (IM-MS) and transition metal ion Förster resonance energy transfer (tmFRET)-based approach to probe the gas-phase ion structures of a nonstapled peptide (nsp; Ac-CAARAAHAAAHARARA-NH2) and a stapled peptide (sp; Ac-CXARAXHAAAHARARA-NH2). The stapled peptide contains a single hydrocarbon chain connecting the peptide backbone in the i and i + 4 positions via a Grubbs ring-closure metathesis. Fluorescence lifetime measurements indicated that the Cu-bound complexes of carboxyrhodamine 6g (crh6g)-labeled stapled peptide (sp-crh6g) had a shorter donor-acceptor distance (rDA) than the labeled nonstapled peptide (nsp-crh6g). Experimental collision cross-section (CCS) values were then determined by native IM-MS, which could separate the conformations of Cu-bound complexes of nsp-crh6g and sp-crh6g. Finally, the experimental CCS (i.e., shape) and rDA (i.e., distance) values were used as constraints for computational studies, which unambiguously revealed how a staple reduces the elongation of the peptide ions in the gas phase. This study demonstrates the superiority of combining native IM-MS, tmFRET, and computational studies to investigate the structure of biomolecular ions.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Elementos de Transición , Espectrometría de Movilidad Iónica/métodos , Iones/química , Espectrometría de Masas/métodos , Péptidos/química
9.
Anal Chem ; 94(29): 10531-10539, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35833795

RESUMEN

Structural isomers of N-glycans that are identical in mass and atomic composition provide a great challenge to conventional mass spectrometry (MS). This study employs additional dimensions of structural elucidation including ion mobility (IM) spectroscopy coupled to hydrogen/deuterium exchange (HDX) and electron capture dissociation (ECD) to characterize three main A2 N-glycans and their conformers. A series of IM-MS experiments were able to separate the low abundance N-glycans and their linkage-based isomers (α1-3 and α1-6 for A2G1). HDX-IM-MS data indicated the presence of multiple gas-phase structures for each N-glycan including the isomers of A2G1. Identification of A2G1 isomers by their collision cross section was complicated due to the preferential collapse of sugars in the gas phase, but it was possible by further ECD fragmentation. The cyclic IM-ECD approach was capable of assigning and identifying each isomer to its IM peak. Two unique cross-ring fragments were identified for each isomer: m/z = 624.21 for α1-6 and m/z = 462.16 for α1-3. Based on these key fragments, the first IM peak, indicating a more compact conformation, was assigned to α1-3 and the second IM peak, a more extended conformer, was assigned to α1-6.


Asunto(s)
Espectrometría de Movilidad Iónica , Polisacáridos , Espectrometría de Movilidad Iónica/métodos , Isomerismo , Espectrometría de Masas/métodos , Conformación Molecular , Polisacáridos/química
10.
Anal Chem ; 92(2): 1702-1711, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31854977

RESUMEN

Native mass spectrometry (MS) is a powerful means for studying macromolecular protein assemblies, including accessing activated states. However, much remains to be understood about what governs which regions of the protein (un)folding funnel, which can be explored by activation of protein ions in a vacuum. Here, we examine the trajectory that Cu/Zn superoxide dismutase (SOD1) dimers take over the unfolding and dissociation free energy landscape in a vacuum. We examined wild-type SOD1 and six disease-related point mutants by using tandem MS and ion-mobility MS as a function of collisional activation. For six of the seven SOD1 variants, increasing activation prompted dimers to transition through two unfolding events and dissociate symmetrically into monomers with (as near as possible) equal charges. The exception was G37R, which proceeded only through the first unfolding transition and displayed a much higher abundance of asymmetric products. Supported by the observation that ejected asymmetric G37R monomers were more compact than symmetric G37R ones, we localized this effect to the formation of a gas-phase salt bridge in the first activated conformation. To examine the data quantitatively, we applied Arrhenius-type analysis to estimate the barriers on the corresponding free energy landscape. This reveals a heightening of the barrier to unfolding in G37R by >5 kJ/mol-1 over the other variants, consistent with expectations for the strength of a salt bridge. Our work demonstrates weaknesses in the simple general framework for understanding protein complex dissociation in a vacuum and highlights the importance of individual residues, their local environment, and specific interactions in governing product formation.


Asunto(s)
Ampicilina/metabolismo , Superóxido Dismutasa-1/metabolismo , Ampicilina/química , Dimerización , Humanos , Cinética , Espectrometría de Masas , Modelos Moleculares , Mutación Puntual , Desplegamiento Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Superóxido Dismutasa-1/química , Superóxido Dismutasa-1/genética , Termodinámica
11.
J Am Soc Mass Spectrom ; 30(2): 256-267, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30324262

RESUMEN

Determination of collisional cross sections (CCS) by travelling wave ion mobility mass spectrometry (TWIM-MS) requires calibration against standards for which the CCS has been measured previously by drift tube ion mobility mass spectrometry (DTIM-MS). The different extents of collisional activation in TWIM-MS and DTIM-MS can give rise to discrepancies in the CCS of calibrants across the two platforms. Furthermore, the conditions required to ionize and transmit large, folded proteins and assemblies may variably affect the structure of the calibrants and analytes. Stable hetero-oligomeric phospholipase A2 (PDx) and its subunits were characterized as calibrants for TWIM-MS. Conditions for acquisition of native-like TWIM (Synapt G1 HDMS) and DTIM (Agilent 6560 IM-Q-TOF) mass spectra were optimized to ensure the spectra exhibited similar charge state distributions. CCS measurements (DTIM-MS) for ubiquitin, cytochrome c, holo-myoglobin, serum albumin and glutamate dehydrogenase were in good agreement with other recent results determined using this and other DTIM-MS instruments. PDx and its ß and γ subunits were stable across a wide range of cone and trap voltages in TWIM-MS and were stable in the presence of organic solvents. The CCS of PDx and its subunits were determined by DTIM-MS and were used as calibrants in determination of CCS of native-like cytochrome c, holo-myoglobin, carbonic anhydrase, serum albumin and haemoglobin in TWIM-MS. The CCS values were in good agreement with those measured by DTIM-MS where available. These experiments demonstrate conditions for analysis of native-like proteins using a commercially available DTIM-MS instrument, characterize robust calibrants for TWIM-MS, and present CCS values determined by DTIM-MS and TWIM-MS for native proteins to add to the current literature database. Graphical Abstract ᅟ.


Asunto(s)
Espectrometría de Movilidad Iónica/métodos , Proteínas/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Calibración , Anhidrasas Carbónicas/análisis , Anhidrasas Carbónicas/química , Citocromos c/análisis , Citocromos c/química , Mioglobina/análisis , Mioglobina/química , Fosfolipasas A2/análisis , Fosfolipasas A2/química , Subunidades de Proteína , Proteínas/análisis , Albúmina Sérica Humana/análisis , Albúmina Sérica Humana/química , Solventes/química , Espectrometría de Masa por Ionización de Electrospray/instrumentación , Espectrometría de Masa por Ionización de Electrospray/normas , Ubiquitina/análisis , Ubiquitina/química
12.
Data Brief ; 9: 501-507, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27747265

RESUMEN

The compositions of paradoxin and taipoxin (PDx and TPx, respectively) were investigated using size exclusion chromatography (SEC) and nano-electrospray ionization mass spectrometry (nano-ESI-MS). The elution profiles from size exclusion chromatography of the venoms from Oxyuranus microlepidotus and Oxyuranus scutellatus were similar. Fractions corresponding to the trimeric toxins were treated with guanidinium hydrochloride and the individual subunits were separated by HPLC. In this report we present the size exclusion chromatography profiles for these toxins, and the nano-ESI mass spectra of the subunits after separation by HPLC: the first such comparative study of these toxins at the protein level. Data in this article are associated with the research article published in Toxicon: "Insight into the subunit arrangement and diversity of paradoxin and taipoxin" (J.A. Harrison, J.A. Aquilina, 2016) [1].

13.
Toxicon ; 112: 45-50, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26827926

RESUMEN

Paradoxin and taipoxin are neurotoxic phospholipases from the inland and coastal species of Australian taipan. Despite their relatively high sequence homology of 70% and 84% for the acidic and basic chains respectively, they differ substantially in reported assays of neurotoxicity. This study provides the first characterisation of paradoxin, which like taipoxin, is a trimer at physiological pH. More broadly, these toxins were found to be composed of a more diverse range of subunits than previously recognised, including newly discovered γTPx isoforms, which give rise to an additional, major conformation of TPx.


Asunto(s)
Venenos Elapídicos/enzimología , Elapidae/metabolismo , Neurotoxinas/química , Fosfolipasas A2 Secretoras/química , Proteínas de Reptiles/química , Animales , Australia , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Venenos Elapídicos/química , Venenos Elapídicos/aislamiento & purificación , Venenos Elapídicos/metabolismo , Isoenzimas/química , Isoenzimas/aislamiento & purificación , Isoenzimas/metabolismo , Peso Molecular , Neurotoxinas/aislamiento & purificación , Neurotoxinas/metabolismo , Fosfolipasas A2 Secretoras/aislamiento & purificación , Fosfolipasas A2 Secretoras/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/aislamiento & purificación , Subunidades de Proteína/metabolismo , Proteínas de Reptiles/aislamiento & purificación , Proteínas de Reptiles/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...