Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Animals (Basel) ; 14(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791614

RESUMEN

Neoplasia has been reported in lizards, but more research is needed to accurately document the prevalence and prognosis of the various known neoplasms that affect lizards. This study reviewed medical records from an online database, the Exotic Species Cancer Research Alliance (ESCRA), and reviewed published literature to determine the prevalence of neoplasia, malignancy, metastasis, treatment strategies, and outcomes by species and sex. Records from 55 individual lizards, 20 different species, and 37 different tumors were identified. In the literature, 219 lizards, 59 species, and 86 unique tumors were identified from 72 published case reports. Potential signalment factors such as age, sex, and species were evaluated to see if they affected case outcome. Additional factors including neoplasia type, presence of metastasis, and types of pursued treatments were also evaluated. Statistical analysis was performed to determine whether a factor was significantly associated with animal death due to the identified neoplasia or with animal survival or death due to other causes (non-neoplastic outcomes). Komodo dragons and savannah monitors were more likely to die from neoplasia compared to other lizard species. Cases where the status of metastasis was unknown were significantly associated with death due to neoplasia. Having an unknown status of male versus female was significantly associated with non-neoplastic outcomes of death. Leukemia and islet cell carcinoma were significantly associated with death due to neoplastic causes. Chondrosarcoma, myxosarcoma, osteosarcoma, and squamous cell carcinoma were significantly associated with non-neoplastic outcomes of death. Surgery alone and radiation therapy alone each were significantly associated with non-neoplastic outcomes of death, while lizards not receiving treatment were significantly associated with death due to neoplasia. Benign neoplasia was significantly associated with non-neoplastic outcomes of death. These results will aid in the improved diagnosis and management of neoplasia in lizard species, as well as expanding our understanding of prognostic indicators of neoplasia in lizards.

2.
Animals (Basel) ; 14(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38338107

RESUMEN

This study evaluated neoplasia in fish using medical records from zoos, aquariums, and exotic animal veterinarians. The parameters evaluated included geographic location, habitat type, signalment, anatomic location of neoplasia, type of neoplasia as confirmed with histologic examination, survival time, and treatments provided for each patient. These data were entered into the Exotic Species Cancer Research Alliance (ESCRA) database. Out of 455 cases from across the United States and England, most animals submitted were from zoologic parks or aquariums (62.9%), followed by private ownership (1.5%). The percent of female (19.3%) and male (17.8%) patients were similar, and the mean age at the time of diagnosis was 99.45 months, with a range of 12 to 300 months. The species with the highest neoplasia prevalence was koi (18.5%), followed by goldfish (10.8%). The eye was the most commonly reported site for a primary neoplasm (8.4%), and the most prevalent diagnosis across all organ systems was soft tissue sarcoma (26.2%). Only 13 patients in this study (2.9%) received any form of treatment, with a mean survival time of 8.85 months post-treatment. These data demonstrate that while information related to clinical therapy of cancer in fish species is lacking, surgical excision of tumors in fish, when feasible for the patient and client, may improve patient outcomes.

3.
Metabolomics ; 19(12): 97, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37999907

RESUMEN

Obesity is a major health concern that poses significant risks for many other diseases, including diabetes, cardiovascular disease, and cancer. Prevalence of these diseases varies by biological sex. This study utilizes a mouse (C57BL/6J) model of obesity to analyze liver and fecal metabolic profiles at various time points of dietary exposure: 5, 9, and 12 months in control or high fat diet (HFD)-exposed mice. Our study discovered that the female HFD group has a more discernable perturbation and set of significant changes in metabolic profiles than the male HFD group. In the female mice, HFD fecal metabolites including pyruvate, aspartate, and glutamate were lower than control diet-exposed mice after both 9th and 12th month exposure time points, while lactate and alanine were significantly downregulated only at the 12th month. Perturbations of liver metabolic profiles were observed in both male and female HFD groups, compared to controls at the 12th month. Overall, the female HFD group showed higher lactate and glutathione levels compared to controls, while the male HFD group showed higher levels of glutamine and taurine compared to controls. These metabolite-based findings in both fecal and liver samples for a diet-induced effect of obesity may help guide future pioneering discoveries relating to the analysis and prevention of obesity in people, especially for females.


Asunto(s)
Dieta Alta en Grasa , Metabolómica , Animales , Femenino , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Lactatos/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo
4.
J Biochem Mol Toxicol ; 37(5): e23316, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36775894

RESUMEN

Diepoxybutane (DEB) is the most toxic metabolite of the environmental chemical 1,3-butadiene. We previously demonstrated the occurrence of DEB-induced p53-mediated apoptosis in human lymphoblasts. The p53 protein functions as a master transcriptional regulator in orchestrating the genomic response to a variety of stress signals. Transcriptomic analysis indicated that C-C chemokine ligand 4 (CCL4) gene expression was elevated in a p53-dependent manner in DEB-exposed p53-proficient TK6 cells, but not in DEB-exposed p53-deficient NH32 cells. Thus, the objective of this study was to determine whether the CCL4 gene is a transcriptional target of p53 and deduce its role in DEB-induced apoptosis in human lymphoblasts. Endogenous and exogenous wild-type p53 transactivated the activity of the CCL4 promoter in DEB-exposed lymphoblasts, but mutant p53 activity on this promoter was reduced by ∼80% under the same experimental conditions. Knockdown of the upregulated CCL4 mRNA levels in p53-proficient TK6 cells inhibited DEB-induced apoptosis by ∼45%-50%. Collectively, these observations demonstrate for the first time that the CCL4 gene is upregulated by wild-type p53 at the transcriptional level, and this upregulation mediates apoptosis in DEB-exposed human lymphoblasts.


Asunto(s)
Apoptosis , Quimiocina CCL4 , Compuestos Epoxi , Proteína p53 Supresora de Tumor , Humanos , Línea Celular , Compuestos Epoxi/toxicidad , Apoptosis/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Quimiocina CCL4/genética , Regulación hacia Arriba
5.
Front Physiol ; 13: 1035538, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406988

RESUMEN

The chicken gastrointestinal tract has a diverse microbial community. There is increasing evidence for how this gut microbiome affects specific molecular pathways and the overall physiology, nervous system and behavior of the chicken host organism due to a growing number of studies investigating conditions such as host diet, antibiotics, probiotics, and germ-free and germ-reduced models. Systems-level investigations have revealed a network of microbiome-related interactions between the gut and state of health and behavior in chickens and other animals. While some microbial symbionts are crucial for maintaining stability and normal host physiology, there can also be dysbiosis, disruptions to nutrient flow, and other outcomes of dysregulation and disease. Likewise, alteration of the gut microbiome is found for chickens exhibiting differences in feather pecking (FP) behavior and this alteration is suspected to be responsible for behavioral change. In chickens and other organisms, serotonin is a chief neuromodulator that links gut microbes to the host brain as microbes modulate the serotonin secreted by the host's own intestinal enterochromaffin cells which can stimulate the central nervous system via the vagus nerve. A substantial part of the serotonergic network is conserved across birds and mammals. Broader investigations of multiple species and subsequent cross-comparisons may help to explore general functionality of this ancient system and its increasingly apparent central role in the gut-brain axis of vertebrates. Dysfunctional behavioral phenotypes from the serotonergic system moreover occur in both birds and mammals with, for example, FP in chickens and depression in humans. Recent studies of the intestine as a major site of serotonin synthesis have been identifying routes by which gut microbial metabolites regulate the chicken serotonergic system. This review in particular highlights the influence of gut microbial metabolite short chain fatty acids (SCFAs) on the serotonergic system. The role of SCFAs in physiological and brain disorders may be considerable because of their ability to cross intestinal as well as the blood-brain barriers, leading to influences on the serotonergic system via binding to receptors and epigenetic modulations. Examinations of these mechanisms may translate into a more general understanding of serotonergic system development within chickens and other avians.

6.
Antibiotics (Basel) ; 11(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35740118

RESUMEN

The rise in antimicrobial resistant bacteria have prompted the need for antibiotic alternatives. To address this problem, significant attention has been given to the antimicrobial use and novel applications of copper. As novel applications of antimicrobial copper increase, it is important to investigate how bacteria may adapt to copper over time. Here, we used experimental evolution with re-sequencing (EER-seq) and RNA-sequencing to study the evolution of copper resistance in Escherichia coli. Subsequently, we tested whether copper resistance led to rifampicin, chloramphenicol, bacitracin, and/or sulfonamide resistance. Our results demonstrate that E. coli is capable of rapidly evolving resistance to CuSO4 after 37 days of selection. We also identified multiple de novo mutations and differential gene expression patterns associated with copper, most notably those mutations identified in the cpx gene. Furthermore, we found that the copper resistant bacteria had decreased sensitivity when compared to the ancestors in the presence of chloramphenicol, bacitracin, and sulfonamide. Our data suggest that the selection of copper resistance may inhibit growth in the antimicrobials tested, resulting in evolutionary trade-offs. The results of our study may have important implications as we consider the antimicrobial use of copper and how bacteria may respond to increased use over time.

7.
Artículo en Inglés | MEDLINE | ID: mdl-35742764

RESUMEN

BACKGROUND: Toxoplasma gondii (T. gondii) is a ubiquitous obligatory intracellular parasite which infects over 40 million Americans and causes toxoplasmosis. Inside the human body, T. gondii can damage tissues and invade vital organs. METHODS: This study evaluated the association of T. gondii infection and liver disease using data from the National Health and Nutrition Examination Survey (NHANES) 2009-2010, with a sample size of 3371 participants (age 20-80 years). Toxoplasma infection was determined by the level of T. gondii IgG antibody in serum samples. Liver disease was assessed by liver injury biomarkers and the Fatty Liver Index (US-FLI). The evaluation of the association between T. gondii infection and liver disease included the calculation of the Mantel-Haenszel risk ratio (RRMH), Rho-Scott chi-square bivariate analyses, design-based t-tests, and linear and logistic regression models which were adjusted for demographic and anthropometric covariates. RESULTS: Mean levels of aspartate aminotransferase (AST) and alkaline phosphatase (ALP) were significantly more elevated in the T. gondii IgG-positive (IgG+) participants as compared to T. gondii-negative (IgG-) participants, p = 0.0435 and 0.0310, respectively. In linear regression analysis, exposure to T. gondii IgG+ had statistically significant positive associations with AST (p = 0.0211), alanine aminotransferase (ALT) (p = 0.0221), and gamma-glutamyl transferase (GGT) (p = 0.0258) after adjusting for BMI, age, gender, and race. T. gondii exposure was associated with an elevated relative risk of chronic liver disease (CLD) (RRMH = 1.26, 95% CI: 1.05-1.51). This association was more pronounced in certain occupations, such as construction, agriculture, forestry, and fishing, where Toxoplasma infection is more common (p = 0.0477). Moreover, Toxoplasma infection increased the odds of nonalcoholic fatty liver disease (NAFLD) (OR = 6.99, 95% CI = 1.85-26.32, p = 0.0237). CONCLUSION: T. gondii IgG+ antibody was significantly associated with liver injury biomarkers (ALT, AST, GGT, and ALP) and an increased risk of CLD and NAFLD. Moreover, the association of Toxoplasma with CLD was more evident in specific occupations where the prevalence of Toxoplasma was high. The findings of this study provide insight into utilizing liver biomarkers and US-FLI to assess the health complications of Toxoplasma when imaging tests are not accessible.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Toxoplasma , Toxoplasmosis , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antiprotozoarios , Humanos , Inmunoglobulina G , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Encuestas Nutricionales , Factores de Riesgo , Estudios Seroepidemiológicos , Toxoplasmosis/epidemiología , Adulto Joven
8.
Animals (Basel) ; 12(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35158582

RESUMEN

This multi-institutional collaborative study of neoplasia in snakes reviewed medical records of snakes at each facility to determine species prevalence, survival, and methods of treatment. Complete species numbers of snakes were also collected at each facility. In total, 65 species, 133 snakes, and 149 unique neoplasias were included in this study. Affected species, age, sex, and their tumor prevalence, tumor type and location, metastasis, treatment, and survival data are reported. The highest species-specific tumor prevalence was in Common or Northern Watersnakes (Nerodia sipedon) (30.8%, n = 4 of 13), Eastern Diamond-Backed Rattlesnakes (Crotalus adamanteus) (26.3%, n = 5 of 19), and Timber rattlesnakes (Crotalus horridus) (22.7%, n = 5 of 22). Malignant tumors predominated (86.6%, n = 129 of 149) with soft tissue sarcomas being the most common (30.2%, n = 45 of 149). Snakes with malignant neoplasia, metastases, or indeterminate presence of metastases were statistically more likely to die from their neoplasms than snakes having either benign neoplasia or no diagnosed metastases (p < 0.05). Gender, taxonomic family, and species of those evaluated did not significantly affect the outcome of snakes with neoplasia. Only 27.1% (n = 36 of 133) of snakes received a reported form of treatment and, for those treated, surgical excision was the most common treatment modality. There was not a significant difference in outcome based on treatment; however, surgery and chemotherapy were associated with death from a cause other than their tumor.

9.
Evol Med Public Health ; 9(1): 53-67, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717488

RESUMEN

BACKGROUND: There has been an increased usage of metallic antimicrobial materials to control pathogenic and multi-drug resistant bacteria. Yet, there is a corresponding need to know if this usage leads to genetic adaptations that could produce more harmful strains. METHODOLOGY: Experimental evolution was used to adapt Escherichia coli K-12 MG1655 to excess iron (II) with subsequent genomic analysis. Phenotypic assays and gene expression studies were conducted to demonstrate pleiotropic effects associated with this adaptation and to elucidate potential cellular responses. RESULTS: After 200 days of adaptation, populations cultured in excess iron (II), showed a significant increase in 24-h optical densities compared to controls. Furthermore, these populations showed increased resistance toward other metals [iron (III) and gallium (III)] and to traditional antibiotics (bacitracin, rifampin, chloramphenicol and sulfanilamide). Genomic analysis identified selective sweeps in three genes; fecA, ptsP and ilvG unique to the iron (II) resistant populations, and gene expression studies demonstrated that their cellular response may be to downregulate genes involved in iron transport (cirA and fecA) while increasing the oxidative stress response (oxyR, soxS and soxR) prior to FeSO4 exposure. CONCLUSIONS AND IMPLICATIONS: Together, this indicates that the selected populations can quickly adapt to stressful levels of iron (II). This study is unique in that it demonstrates that E. coli can adapt to environments that contain excess levels of an essential micronutrient while also demonstrating the genomic foundations of the response and the pleiotropic consequences. The fact that adaptation to excess iron also causes increases in general antibiotic resistance is a serious concern. Lay summary: The evolution of iron resistance in E. coli leads to multi-drug and general metal resistance through the acquisition of mutations in three genes (fecA, ptsP and ilvG) while also initiating cellular defenses as part of their normal growth process.

10.
Artículo en Inglés | MEDLINE | ID: mdl-32460612

RESUMEN

The methane production and the microbial community dynamics of thermophilic anaerobic co-digestion (AD) of corn stover, swine manure and effluent were conducted at total solid (TS) content of 5%, 10% and 15%, the carbon to nitrogen ratio (C/N) of 20, 30 and 40 and the effluent volumetric percentage (EVP) of 20%, 40% and 60%. For batches with 5% TS, the highest methane yield of 238.5-283.1 mL g-1 volatile solid (VS) and the specific methane productivity of 138.5-152.2 mL g-1 initial VS were obtained at the C/N ratios of 20 and 30. For the mixtures with 10% and 15% TS, the highest methane yield was 341.9 mL g-1 VS and 351.2 mL g-1 VS, respectively, when the C/N ratio of 20% and 60% EVP conditions were maintained. Co-digestion of swine manure with corn stover caused an obvious shift in microbial population, in which the archaeal population changed from 0.3% to 2.8% and the bacterial community changed from 97.2% to 99.7%. The experimental batches with the highest relative abundance of the archaeal population (2.00% of total microbial population for 5% TS, 1.74% for 10% TS and 2.76% for 15% TS) had the highest rate of methanogenesis subsequently enhancing methane production (283.08 mL g-1 VS for 5% TS, 341.91 mL g-1 VS for 10% TS and 351.23 mL g-1 VS for 15% TS). The results of microbiome analysis enabled understanding the key populations in biomethane generation.


Asunto(s)
Reactores Biológicos/microbiología , Estiércol/análisis , Metano/biosíntesis , Microbiota , Residuos Sólidos/análisis , Zea mays/química , Anaerobiosis , Animales , Archaea/crecimiento & desarrollo , Bacterias Anaerobias/crecimiento & desarrollo , Biocombustibles/análisis , Carbono/análisis , Modelos Teóricos , Nitrógeno/análisis , Porcinos
11.
J Biochem Mol Toxicol ; 34(3): e22446, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31953984

RESUMEN

Diepoxybutane (DEB) is the most potent active metabolite of the environmental chemical 1,3-butadiene (BD). BD is a human carcinogen that exhibits multiorgan systems toxicity. Our previous studies demonstrated that the X-C motif chemokine ligand 1 (XCL1) gene expression was upregulated 3.3-fold in a p53-dependent manner in TK6 lymphoblasts undergoing DEB-induced apoptosis. The tumor-suppressor p53 protein is a transcription factor that regulates a wide variety of cellular processes, including apoptosis, through its various target genes. Thus, the objective of this study was to determine whether XCL1 is a novel direct p53 transcriptional target gene and deduce its role in DEB-induced toxicity in human lymphoblasts. We utilized the bioinformatics tool p53scan to search for known p53 consensus sequences within the XCL1 promoter region. The XCL1 gene promoter region was found to contain the p53 consensus sequences 5'-AGACATGCCTAGACATGCCT-3' at three positions relative to the transcription start site (TSS). Furthermore, the XCL1 promoter region was found, through reporter gene assays, to be transactivated at least threefold by wild-type p53 promoter in DEB-exposed human lymphoblasts. Inactivation of the XCL1 promoter p53-binding motif located at -2.579 kb relative to TSS reduced the transactivation function of p53 on this promoter in DEB-exposed cells by 97%. Finally, knockdown of XCL1 messenger RNA with specific small interfering RNA inhibited DEB-induced apoptosis in human lymphoblasts by 50%. These observations demonstrate, for the first time, that XCL1 is a novel DEB-induced direct p53 transcriptional target gene that mediates apoptosis in DEB-exposed human lymphoblasts.


Asunto(s)
Apoptosis/efectos de los fármacos , Quimiocinas C/biosíntesis , Compuestos Epoxi/toxicidad , Linfocitos/metabolismo , Elementos de Respuesta , Activación Transcripcional/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular , Humanos , Linfocitos/patología , Transcripción Genética/efectos de los fármacos
12.
Artículo en Inglés | MEDLINE | ID: mdl-31160943

RESUMEN

As CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 technology becomes more mainstream in life science research, it becomes critical for undergraduate instructors to devise engaging ways to bring the technology into their classrooms. To help meet this challenge, the National Science Foundation sponsored a workshop for undergraduate instructors in June 2018 at The Ohio State University in conjunction with the annual Association of Biology Laboratory Educators meeting based on a workflow developed by the workshop's facilitators. Over the course of two and a half days, participants worked through a modular workflow for the use of CRISPR-Cas9 in a course-based (undergraduate) research experience (CURE) setting while discussing the barriers each of their institutions had to implementing such work, and how such barriers could be overcome. The result of the workshop was a team with newfound energy and confidence to implement CRISPR-Cas9 technology in their courses and the development of a community of undergraduate educators dedicated to supporting each other in the implementation of the workflow either in a CURE or modular format. In this article, we review the activities and discussions from the workshop that helped each participant devise their own tailored approaches of how best to bring this exciting new technology into their classes.

13.
J Diabetes Res ; 2019: 5359635, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30868076

RESUMEN

African Americans are disproportionately burdened by diabetic kidney disease (DKD). However, little is known about the cellular and molecular mechanisms underlying the onset and progression of DKD in this population. The goal of the current study was to determine the association between specific inflammation markers and kidney injury in diabetic African American men. To this end, we recruited diabetic patients either with (n = 20) or without (n = 87) diagnosed kidney disease along with age-matched nondiabetic controls (n = 81). Urinary albumin-to-creatinine ratios (UACRs) and estimated glomerular filtration rates (eGFR) were used for biochemical assessment of kidney function. We then measured plasma and urinary levels of seven inflammatory markers, including adiponectin, C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), TNF receptor 1 (TNFR1), TNF receptor 2 (TNFR2), interleukin-6 (IL-6), and intercellular cell adhesion molecule-1 (ICAM-1). Plasma levels of TNF-α, TNFR1, and TNFR2 were significantly higher in diabetics with macroalbuminuria compared to nondiabetic controls and diabetics with normoalbuminuria or microalbuminuria. Likewise, urinary levels of ICAM-1 were higher in diabetics with macroalbuminuria compared to the other groups. Indeed, urinary ICAM-1, plasma TNF-α, and adiponectin had moderate positive correlations with UACR while plasma TNFR1 and TNFR2 levels were strongly correlated with kidney injury, indicated by multiple biomarkers of kidney injury. In contrast, though plasma CRP was elevated in diabetic subjects relative to nondiabetic controls, its levels did not correlate with kidney injury. Together, these data suggest that inflammation, particularly that mediated by the TNF-α/NF-κB signaling axis, may play a role in the pathogenesis of DKD in African American men.


Asunto(s)
Nefropatías Diabéticas/metabolismo , Tasa de Filtración Glomerular/fisiología , Inflamación/metabolismo , Riñón/metabolismo , Adiponectina/metabolismo , Adulto , Negro o Afroamericano , Biomarcadores/metabolismo , Proteína C-Reactiva/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/fisiopatología , Humanos , Inflamación/patología , Inflamación/fisiopatología , Molécula 1 de Adhesión Intercelular/metabolismo , Interleucina-6/metabolismo , Riñón/patología , Riñón/fisiopatología , Pruebas de Función Renal , Masculino , Persona de Mediana Edad , FN-kappa B/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/metabolismo
14.
Evol Med Public Health ; 2019(1): 169-180, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31890209

RESUMEN

BACKGROUND AND OBJECTIVES: Metallic antimicrobial materials are of growing interest due to their potential to control pathogenic and multidrug-resistant bacteria. Yet we do not know if utilizing these materials can lead to genetic adaptations that produce even more dangerous bacterial varieties. METHODOLOGY: Here we utilize experimental evolution to produce strains of Escherichia coli K-12 MG1655 resistant to, the iron analog, gallium nitrate (Ga(NO3)3). Whole genome sequencing was utilized to determine genomic changes associated with gallium resistance. Computational modeling was utilized to propose potential molecular mechanisms of resistance. RESULTS: By day 10 of evolution, increased gallium resistance was evident in populations cultured in medium containing a sublethal concentration of gallium. Furthermore, these populations showed increased resistance to ionic silver and iron (III), but not iron (II) and no increase in traditional antibiotic resistance compared with controls and the ancestral strain. In contrast, the control populations showed increased resistance to rifampicin relative to the gallium-resistant and ancestral population. Genomic analysis identified hard selective sweeps of mutations in several genes in the gallium (III)-resistant lines including: fecA (iron citrate outer membrane transporter), insl1 (IS30 tranposase) one intergenic mutations arsC →/→ yhiS; (arsenate reductase/pseudogene) and in one pseudogene yedN ←; (iapH/yopM family). Two additional significant intergenic polymorphisms were found at frequencies > 0.500 in fepD ←/→ entS (iron-enterobactin transporter subunit/enterobactin exporter, iron-regulated) and yfgF ←/→ yfgG (cyclic-di-GMP phosphodiesterase, anaerobic/uncharacterized protein). The control populations displayed mutations in the rpoB gene, a gene associated with rifampicin resistance. CONCLUSIONS: This study corroborates recent results observed in experiments utilizing pathogenic Pseudomonas strains that also showed that Gram-negative bacteria can rapidly evolve resistance to an atom that mimics an essential micronutrient and shows the pleiotropic consequences associated with this adaptation. LAY SUMMARY: We utilize experimental evolution to produce strains of Escherichia coli K-12 MG1655 resistant to, the iron analog, gallium nitrate (Ga(NO3)3). Whole genome sequencing was utilized to determine genomic changes associated with gallium resistance. Computational modeling was utilized to propose potential molecular mechanisms of resistance.

15.
Int J Nephrol ; 2018: 6753489, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29854459

RESUMEN

Diabetes is the leading cause of chronic kidney disease. African Americans are disproportionately burdened by diabetic kidney disease (DKD) and end stage renal disease (ESRD). Disparities in DKD have genetic and socioeconomic components, yet its prevalence in African Americans is not adequately studied. The current study used multiple biomarkers of DKD to evaluate undiagnosed DKD in uninsured and underinsured African American men in Greensboro, North Carolina. Participants consisted of three groups: nondiabetic controls, diabetic patients without known kidney disease, and diabetic patients with diagnosed DKD. Our data reveal undiagnosed kidney injury in a significant proportion of the diabetic patients, based on levels of both plasma and urinary biomarkers of kidney injury, namely, urinary albumin to creatinine ratio, kidney injury molecule-1, cystatin C, and neutrophil gelatinase-associated lipocalin. We also found that the urinary levels of meprin A, meprin B, and two kidney meprin targets (nidogen-1 and monocytes chemoattractant protein-1) increased with severity of kidney injury, suggesting a potential role for meprin metalloproteases in the pathophysiology of DKD in this subpopulation. The study also demonstrates a need for more aggressive tests to assess kidney injury in uninsured diabetic patients to facilitate early diagnosis and targeted interventions that could slow progression to ESRD.

16.
BMC Public Health ; 18(1): 174, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29361918

RESUMEN

BACKGROUND: Tuberculosis (TB) is a serious health concern, particularly in developing countries. Various delays, such as patient delay (PD) and healthcare system delay (HSD) in the TB process, are exacerbating the disease burden and increasing the rates of transmission and mortality in various global communities. Therefore, the aim of this study is to identify risk factors associated with PD and HSD in TB patients in Tabriz, Iran. METHODS: A cross-sectional study was conducted on 173 TB patients in Tabriz, Iran from 2012 to 2014. Patients were interviewed with a semi-structured questionnaire. Frequencies and percentages were reported for patient categories of sex, age, and education. The median and interquartile range (IQR) were reported for the time intervals of delays. Univariate and multivariate logistic regressions of delay in respect to socio-demographic and clinical variables were performed. Statistical significance was set at p < 0.05. RESULTS: The median values for delays were 53 days for HSD (IQR = 73) and 13 days for PD (IQR = 57). Odds ratios (OR) associated with PD were: employed vs. unemployed (OR = 5.86, 95% CI: 1.59 to 21.64); public hospitals vs. private hospitals (OR = 2.64, 95% CI: 1.01 to 6.85); ≥ 3 vs. < 3 visits to health facilities before correct diagnosis (OR = 2.35, 95% CI: 1.08 to 5.11); and male vs. female (OR = 2.28, 95% CI: 1.29 to 4.39). The OR associated with HSD were: ≥ 3 vs. < 3 visits to health facilities before correct diagnosis (OR = 9.44, 95% CI: 4.50 to 19.82), without vs. with access to TB diagnostic services (OR = 3.56, 95% CI: 1.85 to 6.83), and misdiagnosis as cold or viral infection vs. not (OR = 2.62, 95% CI: 1.40 to 4.91). CONCLUSIONS: The results provide for an important understanding of the risk factors associated with PD and HSD. One of the major recommendations is to provide more TB diagnostic knowledge and tools to primary health providers and correct diagnoses for patients during their initial visit to the health care facilities. The knowledge generated from this study will be helpful for prioritizing and developing strategies for minimizing delays, initiating early treatment to TB patients, and improving TB-related training programs and healthcare systems in Tabriz, Iran.


Asunto(s)
Diagnóstico Tardío/estadística & datos numéricos , Atención a la Salud/organización & administración , Aceptación de la Atención de Salud/estadística & datos numéricos , Tiempo de Tratamiento/estadística & datos numéricos , Tuberculosis Pulmonar/terapia , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios Transversales , Femenino , Conocimientos, Actitudes y Práctica en Salud , Humanos , Irán , Masculino , Persona de Mediana Edad , Factores de Riesgo , Factores Socioeconómicos , Tuberculosis Pulmonar/diagnóstico , Adulto Joven
17.
BioData Min ; 10: 29, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28785315

RESUMEN

BACKGROUND: The modeling of genetic interactions within a cell is crucial for a basic understanding of physiology and for applied areas such as drug design. Interactions in gene regulatory networks (GRNs) include effects of transcription factors, repressors, small metabolites, and microRNA species. In addition, the effects of regulatory interactions are not always simultaneous, but can occur after a finite time delay, or as a combined outcome of simultaneous and time delayed interactions. Powerful biotechnologies have been rapidly and successfully measuring levels of genetic expression to illuminate different states of biological systems. This has led to an ensuing challenge to improve the identification of specific regulatory mechanisms through regulatory network reconstructions. Solutions to this challenge will ultimately help to spur forward efforts based on the usage of regulatory network reconstructions in systems biology applications. METHODS: We have developed a hierarchical recurrent neural network (HRNN) that identifies time-delayed gene interactions using time-course data. A customized genetic algorithm (GA) was used to optimize hierarchical connectivity of regulatory genes and a target gene. The proposed design provides a non-fully connected network with the flexibility of using recurrent connections inside the network. These features and the non-linearity of the HRNN facilitate the process of identifying temporal patterns of a GRN. RESULTS: Our HRNN method was implemented with the Python language. It was first evaluated on simulated data representing linear and nonlinear time-delayed gene-gene interaction models across a range of network sizes and variances of noise. We then further demonstrated the capability of our method in reconstructing GRNs of the Saccharomyces cerevisiae synthetic network for in vivo benchmarking of reverse-engineering and modeling approaches (IRMA). We compared the performance of our method to TD-ARACNE, HCC-CLINDE, TSNI and ebdbNet across different network sizes and levels of stochastic noise. We found our HRNN method to be superior in terms of accuracy for nonlinear data sets with higher amounts of noise. CONCLUSIONS: The proposed method identifies time-delayed gene-gene interactions of GRNs. The topology-based advancement of our HRNN worked as expected by more effectively modeling nonlinear data sets. As a non-fully connected network, an added benefit to HRNN was how it helped to find the few genes which regulated the target gene over different time delays.

18.
J Zoo Wildl Med ; 48(2): 440-445, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28749271

RESUMEN

Causes of morbidity and mortality for various species of tenrecs have not been widely published, aside from several reports of neoplasia, and these data are crucial for advancing objectives for preventive medicine, diagnosis, and treatment. A survey on husbandry, morbidity, and mortality of lesser hedgehog tenrecs ( Echinops telfairi ) in Association of Zoos and Aquariums (AZA) institutions was conducted. Out of 32 institutions, 20 responded with data for 98 living and 93 dead animals. The most common causes of mortality among the dead animals were neoplasia (24%), hepatic lipidosis (11%), septicemia (8.6%), pneumonia (8.6%), cardiomyopathy (7.5%), renal disease (6.5%), osteomyelitis (3.2%), and trauma (3.2%). There was no statistically significant correlation between sex and neoplasia. Data about educational usage were specifically provided by survey respondents for 50 of the tenrecs, with only 42% being excluded from educational programming. Tenrecs are common to many AZA institutions as both educational and exhibit animals, and this study provides a helpful reference for expected health problems and highlights the need for future investments into medical diagnosis and treatment for these animals.


Asunto(s)
Crianza de Animales Domésticos/normas , Eulipotyphla/fisiología , Envejecimiento , Crianza de Animales Domésticos/métodos , Animales , Animales de Zoológico , Causas de Muerte , Femenino , Masculino , Mortalidad , Neoplasias/veterinaria
19.
Front Nutr ; 3: 20, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27493939

RESUMEN

Adequate brain iron levels are essential for enzyme activities, myelination, and neurotransmitter synthesis in the brain. Although systemic iron deficiency has been found in genetically or dietary-induced obese subjects, the effects of obesity-associated iron dysregulation in brain regions have not been examined. The objective of this study was to examine the effect of dietary fat and iron interaction on brain regional iron contents and regional-associated behavior patterns in a mouse model. Thirty C57BL/6J male weanling mice were randomly assigned to six dietary treatment groups (n = 5) with varying fat (control/high) and iron (control/high/low) contents. The stereotypical behaviors were measured during the 24th week. Blood, liver, and brain tissues were collected at the end of the 24th week. Brains were dissected into the hippocampus, midbrain, striatum, and thalamus regions. Iron contents and ferritin heavy chain (FtH) protein and mRNA expressions in these regions were measured. Correlations between stereotypical behaviors and brain regional iron contents were analyzed at the 5% significance level. Results showed that high-fat diet altered the stereotypical behaviors such as inactivity and total distance traveled (P < 0.05). The high-fat diet altered brain iron contents and FtH protein and mRNA expressions in a regional-specific manner: (1) high-fat diet significantly decreased the brain iron content in the striatum (P < 0.05), but not other regions, and (2) thalamus has a more distinct change in FtH mRNA expression compared with other regions. Furthermore, high-fat diet resulted in a significant decreased total distance traveled and a significant correlation between iron content and sleeping in midbrain (P < 0.05). Dietary iron also decreased brain iron content and FtH protein expression in a regionally specific manner. The effect of interaction between dietary fat and iron was observed in brain iron content and behaviors. All these findings will lay foundations to further explore the links among obesity, behaviors, and brain iron alteration.

20.
PLoS One ; 11(2): e0149769, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26914334

RESUMEN

A majority of antibiotic-resistant bacterial infections in the United States are associated with biofilms. Nanoscale biophysical measures are increasingly revealing that adhesive and viscoelastic properties of bacteria play essential roles across multiple stages of biofilm development. Atomic Force Microscopy (AFM) applied to strains with variation in antimicrobial resistance enables new opportunities for investigating the function of adhesive forces (stickiness) in biofilm formation. AFM force spectroscopy analysis of a field strain of Listeria innocua and the strain Escherichia coli K-12 MG1655 revealed differing adhesive forces between antimicrobial resistant and nonresistant strains. Significant increases in stickiness were found at the nanonewton level for strains of Listeria innocua and Escherichia coli in association with benzalkonium chloride and silver nanoparticle resistance respectively. This advancement in the usage of AFM provides for a fast and reliable avenue for analyzing antimicrobial resistant cells and the molecular dynamics of biofilm formation as a protective mechanism.


Asunto(s)
Antibacterianos/farmacología , Fenómenos Biofísicos , Farmacorresistencia Bacteriana , Escherichia coli K12/efectos de los fármacos , Listeria/efectos de los fármacos , Compuestos de Benzalconio/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Escherichia coli K12/fisiología , Listeria/fisiología , Plata/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...