Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732115

RESUMEN

Favipiravir (FP) and ebselen (EB) belong to a diverse class of antiviral drugs known for their significant efficacy in treating various viral infections. Utilizing molecular dynamics (MD) simulations, machine learning, and van der Waals density functional theory, we accurately elucidate the binding properties of these antiviral drugs on a phosphorene single-layer. To further investigate these characteristics, this study employs four distinct machine learning models-Random Forest, Gradient Boosting, XGBoost, and CatBoost. The Hamiltonian of antiviral molecules within a monolayer of phosphorene is appropriately trained. The key aspect of utilizing machine learning (ML) in drug design revolves around training models that are efficient and precise in approximating density functional theory (DFT). Furthermore, the study employs SHAP (SHapley Additive exPlanations) to elucidate model predictions, providing insights into the contribution of each feature. To explore the interaction characteristics and thermodynamic properties of the hybrid drug, we employ molecular dynamics and DFT calculations in a vacuum interface. Our findings suggest that this functionalized 2D complex exhibits robust thermostability, indicating its potential as an effective and enabled entity. The observed variations in free energy at different surface charges and temperatures suggest the adsorption potential of FP and EB molecules from the surrounding environment.


Asunto(s)
Antivirales , Aprendizaje Automático , Simulación de Dinámica Molecular , Antivirales/química , Antivirales/farmacología , Teoría Funcional de la Densidad , Termodinámica , Isoindoles/química , Compuestos de Organoselenio/química , Compuestos de Organoselenio/farmacología , Azoles/química , Azoles/farmacología
2.
Artif Intell Med ; 148: 102767, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38325923

RESUMEN

Identifying COVID-19 through blood sample analysis is crucial in managing the disease and improving patient outcomes. Despite its advantages, the current test demands certified laboratories, expensive equipment, trained personnel, and 3-4 h for results, with a notable false-negative rate of 15%-20%. This study proposes a stacked deep-learning approach for detecting COVID-19 in blood samples to distinguish uninfected individuals from those infected with the virus. Three stacked deep learning architectures, namely the StackMean, StackMax, and StackRF algorithms, are introduced to improve the detection quality of single deep learning models. To counter the class imbalance phenomenon in the training data, the Synthetic Minority Oversampling Technique (SMOTE) algorithm is also implemented, resulting in increased specificity and sensitivity. The efficacy of the methods is assessed by utilizing blood samples obtained from hospitals in Brazil and Italy. Results revealed that the StackMax method greatly boosted the deep learning and traditional machine learning methods' capability to distinguish COVID-19-positive cases from normal cases, while SMOTE increased the specificity and sensitivity of the stacked models. Hypothesis testing is performed to determine if there is a significant statistical difference in the performance between the compared detection methods. Additionally, the significance of blood sample features in identifying COVID-19 is analyzed using the XGBoost (eXtreme Gradient Boosting) technique for feature importance identification. Overall, this methodology could potentially enhance the timely and precise identification of COVID-19 in blood samples.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Aprendizaje Automático , Algoritmos
3.
Diagnostics (Basel) ; 13(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37189568

RESUMEN

This study introduces a new method for identifying COVID-19 infections using blood test data as part of an anomaly detection problem by combining the kernel principal component analysis (KPCA) and one-class support vector machine (OCSVM). This approach aims to differentiate healthy individuals from those infected with COVID-19 using blood test samples. The KPCA model is used to identify nonlinear patterns in the data, and the OCSVM is used to detect abnormal features. This approach is semi-supervised as it uses unlabeled data during training and only requires data from healthy cases. The method's performance was tested using two sets of blood test samples from hospitals in Brazil and Italy. Compared to other semi-supervised models, such as KPCA-based isolation forest (iForest), local outlier factor (LOF), elliptical envelope (EE) schemes, independent component analysis (ICA), and PCA-based OCSVM, the proposed KPCA-OSVM approach achieved enhanced discrimination performance for detecting potential COVID-19 infections. For the two COVID-19 blood test datasets that were considered, the proposed approach attained an AUC (area under the receiver operating characteristic curve) of 0.99, indicating a high accuracy level in distinguishing between positive and negative samples based on the test results. The study suggests that this approach is a promising solution for detecting COVID-19 infections without labeled data.

4.
Molecules ; 28(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37110754

RESUMEN

Favipiravir (FP) and Ebselen (EB) belong to a broad range of antiviral drugs that have shown active potential as medications against many viruses. Employing molecular dynamics simulations and machine learning (ML) combined with van der Waals density functional theory, we have uncovered the binding characteristics of these two antiviral drugs on a phosphorene nanocarrier. Herein, by using four different machine learning models (i.e., Bagged Trees, Gaussian Process Regression (GPR), Support Vector Regression (SVR), and Regression Trees (RT)), the Hamiltonian and the interaction energy of antiviral molecules in a phosphorene monolayer are trained in an appropriate way. However, training efficient and accurate models for approximating the density functional theory (DFT) is the final step in using ML to aid in the design of new drugs. To improve the prediction accuracy, the Bayesian optimization approach has been employed to optimize the GPR, SVR, RT, and BT models. Results revealed that the GPR model obtained superior prediction performance with an R2 of 0.9649, indicating that it can explain 96.49% of the data's variability. Then, by means of DFT calculations, we examine the interaction characteristics and thermodynamic properties in a vacuum and a continuum solvent interface. These results illustrate that the hybrid drug is an enabled, functionalized 2D complex with vigorous thermostability. The change in Gibbs free energy at different surface charges and temperatures implies that the FP and EB molecules are allowed to adsorb from the gas phase onto the 2D monolayer at different pH conditions and high temperatures. The results reveal a valuable antiviral drug therapy loaded by 2D biomaterials that may possibly open a new way of auto-treating different diseases, such as SARS-CoV, in primary terms.


Asunto(s)
Antivirales , Simulación de Dinámica Molecular , Antivirales/farmacología , Antivirales/química , Teorema de Bayes , Aprendizaje Automático , Teoría Funcional de la Densidad
5.
Diagnostics (Basel) ; 12(12)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36552991

RESUMEN

This paper introduces an unsupervised deep learning-driven scheme for mental tasks' recognition using EEG signals. To this end, the Multichannel Wiener filter was first applied to EEG signals as an artifact removal algorithm to achieve robust recognition. Then, a quadratic time-frequency distribution (QTFD) was applied to extract effective time-frequency signal representation of the EEG signals and catch the EEG signals' spectral variations over time to improve the recognition of mental tasks. The QTFD time-frequency features are employed as input for the proposed deep belief network (DBN)-driven Isolation Forest (iF) scheme to classify the EEG signals. Indeed, a single DBN-based iF detector is constructed based on each class's training data, with the class's samples as inliers and all other samples as anomalies (i.e., one-vs.-rest). The DBN is considered to learn pertinent information without assumptions on the data distribution, and the iF scheme is used for data discrimination. This approach is assessed using experimental data comprising five mental tasks from a publicly available database from the Graz University of Technology. Compared to the DBN-based Elliptical Envelope, Local Outlier Factor, and state-of-the-art EEG-based classification methods, the proposed DBN-based iF detector offers superior discrimination performance of mental tasks.

6.
IEEE Trans Instrum Meas ; 71: 2500211, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35582656

RESUMEN

A sample blood test has recently become an important tool to help identify false-positive/false-negative real-time reverse transcription polymerase chain reaction (rRT-PCR) tests. Importantly, this is mainly because it is an inexpensive and handy option to detect the potential COVID-19 patients. However, this test should be conducted by certified laboratories, expensive equipment, and trained personnel, and 3-4 h are needed to deliver results. Furthermore, it has relatively large false-negative rates around 15%-20%. Consequently, an alternative and more accessible solution, quicker and less costly, is needed. This article introduces flexible and unsupervised data-driven approaches to detect the COVID-19 infection based on blood test samples. In other words, we address the problem of COVID-19 infection detection using a blood test as an anomaly detection problem through an unsupervised deep hybrid model. Essentially, we amalgamate the features extraction capability of the variational autoencoder (VAE) and the detection sensitivity of the one-class support vector machine (1SVM) algorithm. Two sets of routine blood tests samples from the Albert Einstein Hospital, S ao Paulo, Brazil, and the San Raffaele Hospital, Milan, Italy, are used to assess the performance of the investigated deep learning models. Here, missing values have been imputed based on a random forest regressor. Compared to generative adversarial networks (GANs), deep belief network (DBN), and restricted Boltzmann machine (RBM)-based 1SVM, the traditional VAE, GAN, DBN, and RBM with softmax layer as discriminator layer, and the standalone 1SVM, the proposed VAE-based 1SVM detector offers superior discrimination performance of potential COVID-19 infections. Results also revealed that the deep learning-driven 1SVM detection approaches provide promising detection performance compared to the conventional deep learning models.

7.
J Ambient Intell Humaniz Comput ; : 1-15, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35132336

RESUMEN

Recently, the hospital systems face a high influx of patients generated by several events, such as seasonal flows or health crises related to epidemics (e.g., COVID'19). Despite the extent of the care demands, hospital establishments, particularly emergency departments (EDs), must admit patients for medical treatments. However, the high patient influx often increases patients' length of stay (LOS) and leads to overcrowding problems within the EDs. To mitigate this issue, hospital managers need to predict the patient's LOS, which is an essential indicator for assessing ED overcrowding and the use of the medical resources (allocation, planning, utilization rates). Thus, accurately predicting LOS is necessary to improve ED management. This paper proposes a deep learning-driven approach for predicting the patient LOS in ED using a generative adversarial network (GAN) model. The GAN-driven approach flexibly learns relevant information from linear and nonlinear processes without prior assumptions on data distribution and significantly enhances the prediction accuracy. Furthermore, we classified the predicted patients' LOS according to time spent at the pediatric emergency department (PED) to further help decision-making and prevent overcrowding. The experiments were conducted on actual data obtained from the PED in Lille regional hospital center, France. The GAN model results were compared with other deep learning models, including deep belief networks, convolutional neural network, stacked auto-encoder, and four machine learning models, namely support vector regression, random forests, adaboost, and decision tree. Results testify that deep learning models are suitable for predicting patient LOS and highlight GAN's superior performance than the other models.

8.
Sci Rep ; 12(1): 2467, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35165290

RESUMEN

This study aims to develop an assumption-free data-driven model to accurately forecast COVID-19 spread. Towards this end, we firstly employed Bayesian optimization to tune the Gaussian process regression (GPR) hyperparameters to develop an efficient GPR-based model for forecasting the recovered and confirmed COVID-19 cases in two highly impacted countries, India and Brazil. However, machine learning models do not consider the time dependency in the COVID-19 data series. Here, dynamic information has been taken into account to alleviate this limitation by introducing lagged measurements in constructing the investigated machine learning models. Additionally, we assessed the contribution of the incorporated features to the COVID-19 prediction using the Random Forest algorithm. Results reveal that significant improvement can be obtained using the proposed dynamic machine learning models. In addition, the results highlighted the superior performance of the dynamic GPR compared to the other models (i.e., Support vector regression, Boosted trees, Bagged trees, Decision tree, Random Forest, and XGBoost) by achieving an averaged mean absolute percentage error of around 0.1%. Finally, we provided the confidence level of the predicted results based on the dynamic GPR model and showed that the predictions are within the 95% confidence interval. This study presents a promising shallow and simple approach for predicting COVID-19 spread.


Asunto(s)
Algoritmos , COVID-19/transmisión , Predicción/métodos , Aprendizaje Automático , Redes Neurales de la Computación , Teorema de Bayes , Brasil/epidemiología , COVID-19/epidemiología , COVID-19/virología , Humanos , India/epidemiología , Pandemias/prevención & control , Reproducibilidad de los Resultados , SARS-CoV-2/fisiología
9.
Cluster Comput ; 25(1): 561-578, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34629940

RESUMEN

Presently, Supervisory Control and Data Acquisition (SCADA) systems are broadly adopted in remote monitoring large-scale production systems and modern power grids. However, SCADA systems are continuously exposed to various heterogeneous cyberattacks, making the detection task using the conventional intrusion detection systems (IDSs) very challenging. Furthermore, conventional security solutions, such as firewalls, and antivirus software, are not appropriate for fully protecting SCADA systems because they have distinct specifications. Thus, accurately detecting cyber-attacks in critical SCADA systems is undoubtedly indispensable to enhance their resilience, ensure safe operations, and avoid costly maintenance. The overarching goal of this paper is to detect malicious intrusions that already detoured traditional IDS and firewalls. In this paper, a stacked deep learning method is introduced to identify malicious attacks targeting SCADA systems. Specifically, we investigate the feasibility of a deep learning approach for intrusion detection in SCADA systems. Real data sets from two laboratory-scale SCADA systems, a two-line three-bus power transmission system and a gas pipeline are used to evaluate the proposed method's performance. The results of this investigation show the satisfying detection performance of the proposed stacked deep learning approach. This study also showed that the proposed approach outperformed the standalone deep learning models and the state-of-the-art algorithms, including Nearest neighbor, Random forests, Naive Bayes, Adaboost, Support Vector Machine, and oneR. Besides detecting the malicious attacks, we also investigate the feature importance of the cyber-attacks detection process using the Random Forest procedure, which helps design more parsimonious models.

10.
Health Informatics J ; 27(2): 14604582211021649, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34096378

RESUMEN

Overcrowding in emergency departments (EDs) is a primary concern for hospital administration. They aim to efficiently manage patient demands and reducing stress in the ED. Detection of abnormal ED demands (patient flows) in hospital systems aids ED managers to obtain appropriate decisions by optimally allocating the available resources following patient attendance. This paper presents a monitoring strategy that provides an early alert in an ED when an abnormally high patient influx occurs. Anomaly detection using this strategy involves the amalgamation of autoregressive-moving-average (ARMA) time series models with the generalized likelihood ratio (GLR) chart. A nonparametric procedure based on kernel density estimation is employed to determine the detection threshold of the ARMA-GLR chart. The developed ARMA-based GLR has been validated through practical data from the ED at Lille Hospital, France. Then, the ARMA-based GLR method's performance was compared to that of other commonly used charts, including a Shewhart chart and an exponentially weighted moving average chart; it proved more accurate.


Asunto(s)
Servicio de Urgencia en Hospital , Hospitales , Francia , Humanos
11.
J Biomed Inform ; 118: 103791, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33915272

RESUMEN

Within the recent pandemic, scientists and clinicians are engaged in seeking new technology to stop or slow down the COVID-19 pandemic. The benefit of machine learning, as an essential aspect of artificial intelligence, on past epidemics offers a new line to tackle the novel Coronavirus outbreak. Accurate short-term forecasting of COVID-19 spread plays an essential role in improving the management of the overcrowding problem in hospitals and enables appropriate optimization of the available resources (i.e., materials and staff).This paper presents a comparative study of machine learning methods for COVID-19 transmission forecasting. We investigated the performances of deep learning methods, including the hybrid convolutional neural networks-Long short-term memory (LSTM-CNN), the hybrid gated recurrent unit-convolutional neural networks (GAN-GRU), GAN, CNN, LSTM, and Restricted Boltzmann Machine (RBM), as well as baseline machine learning methods, namely logistic regression (LR) and support vector regression (SVR). The employment of hybrid models (i.e., LSTM-CNN and GAN-GRU) is expected to eventually improve the forecasting accuracy of COVID-19 future trends. The performance of the investigated deep learning and machine learning models was tested using confirmed and recovered COVID-19 cases time-series data from seven impacted countries: Brazil, France, India, Mexico, Russia, Saudi Arabia, and the US. The results reveal that hybrid deep learning models can efficiently forecast COVID-19 cases. Also, results confirmed the superior performance of deep learning models compared to the two considered baseline machine learning models. Furthermore, results showed that LSTM-CNN achieved improved performances with an averaged mean absolute percentage error of 3.718%, among others.


Asunto(s)
COVID-19/transmisión , Aprendizaje Automático , Pandemias , Inteligencia Artificial , Brasil , Aprendizaje Profundo , Predicción , Francia , Humanos , India , México , Redes Neurales de la Computación , Federación de Rusia , Arabia Saudita , Estados Unidos
12.
Chaos Solitons Fractals ; 139: 110247, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32982079

RESUMEN

As the demand for medical cares has considerably expanded, the issue of managing patient flow in hospitals and especially in emergency departments (EDs) is certainly a key issue to be carefully mitigated. This can lead to overcrowding and the degradation of the quality of the provided medical services. Thus, the accurate modeling and forecasting of ED visits are critical for efficiently managing the overcrowding problems and enable appropriate optimization of the available resources. This paper proposed an effective method to forecast daily and hourly visits at an ED using Variational AutoEncoder (VAE) algorithm. Indeed, the VAE model as a deep learning-based model has gained special attention in features extraction and modeling due to its distribution-free assumptions and superior nonlinear approximation. Two types of forecasting were conducted: one- and multi-step-ahead forecasting. To the best of our knowledge, this is the first time that the VAE is investigated to improve forecasting of patient arrivals time-series data. Data sets from the pediatric emergency department at Lille regional hospital center, France, are employed to evaluate the forecasting performance of the introduced method. The VAE model was evaluated and compared with seven methods namely Recurrent Neural Network (RNN), Long short-term memory (LSTM), Bidirectional LSTM (BiLSTM), Convolutional LSTM Network (ConvLSTM), restricted Boltzmann machine (RBM), Gated recurrent units (GRUs), and convolutional neural network (CNN). The results clearly show the promising performance of these deep learning models in forecasting ED visits and emphasize the better performance of the VAE in comparison to the other models.

13.
Chaos Solitons Fractals ; 140: 110121, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32834633

RESUMEN

The novel coronavirus (COVID-19) has significantly spread over the world and comes up with new challenges to the research community. Although governments imposing numerous containment and social distancing measures, the need for the healthcare systems has dramatically increased and the effective management of infected patients becomes a challenging problem for hospitals. Thus, accurate short-term forecasting of the number of new contaminated and recovered cases is crucial for optimizing the available resources and arresting or slowing down the progression of such diseases. Recently, deep learning models demonstrated important improvements when handling time-series data in different applications. This paper presents a comparative study of five deep learning methods to forecast the number of new cases and recovered cases. Specifically, simple Recurrent Neural Network (RNN), Long short-term memory (LSTM), Bidirectional LSTM (BiLSTM), Gated recurrent units (GRUs) and Variational AutoEncoder (VAE) algorithms have been applied for global forecasting of COVID-19 cases based on a small volume of data. This study is based on daily confirmed and recovered cases collected from six countries namely Italy, Spain, France, China, USA, and Australia. Results demonstrate the promising potential of the deep learning model in forecasting COVID-19 cases and highlight the superior performance of the VAE compared to the other algorithms.

14.
J Environ Manage ; 223: 807-814, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29986328

RESUMEN

The efficient operation of wastewater treatment plants (WWTPs) is key to ensuring a sustainable and friendly green environment. Monitoring wastewater processes is helpful not only for evaluating the process operating conditions but also for inspecting product quality. This paper presents a flexible and efficient fault detection approach based on unsupervised deep learning to monitor the operating conditions of WWTPs. Specifically, this approach integrates a deep belief networks (DBN) model and a one-class support vector machine (OCSVM) to separate normal from abnormal features by simultaneously taking advantage of the feature-extraction capability of DBNs and the superior predicting capacity of OCSVM. Here, the DBN model, which is a powerful tool with greedy learning features, accounts for the nonlinear aspects of WWTPs, while OCSVM is used to reliably detect the faults. The developed DBN-OCSVM approach is tested through a practical application on data from a decentralized WWTP in Golden, CO, USA. The results from the DBN-OCSVM are compared with two other detectors: DBN-based K-nearest neighbor and K-means algorithms. The results show the capability of the developed strategy to monitor the WWTP, suggesting that it can raise an early alert to the abnormal conditions.


Asunto(s)
Algoritmos , Máquina de Vectores de Soporte , Aguas Residuales , Modelos Teóricos , Administración de Residuos
15.
Biosystems ; 165: 106-121, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29409799

RESUMEN

In certain swarm applications, where the inter-agent distance is not the only factor in the collective behaviours of the swarm, additional properties such as density could have a crucial effect. In this paper, we propose applying a Distance-Weighted K-Nearest Neighbouring (DW-KNN) topology to the behaviour of robot swarms performing self-organized aggregation, in combination with a virtual physics approach to keep the robots together. A distance-weighted function based on a Smoothed Particle Hydrodynamic (SPH) interpolation approach, which is used to evaluate the robot density in the swarm, is applied as the key factor for identifying the K-nearest neighbours taken into account when aggregating the robots. The intra virtual physical connectivity among these neighbours is achieved using a virtual viscoelastic-based proximity model. With the ARGoS based-simulator, we model and evaluate the proposed approach, showing various self-organized aggregations performed by a swarm of N foot-bot robots. Also, we compared the aggregation quality of DW-KNN aggregation approach to that of the conventional KNN approach and found better performance.


Asunto(s)
Algoritmos , Simulación por Computador , Conducta Cooperativa , Modelos Teóricos , Robótica/métodos
16.
J Med Syst ; 40(12): 284, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27796842

RESUMEN

In this paper, we address the problem of detecting human falls using anomaly detection. Detection and classification of falls are based on accelerometric data and variations in human silhouette shape. First, we use the exponentially weighted moving average (EWMA) monitoring scheme to detect a potential fall in the accelerometric data. We used an EWMA to identify features that correspond with a particular type of fall allowing us to classify falls. Only features corresponding with detected falls were used in the classification phase. A benefit of using a subset of the original data to design classification models minimizes training time and simplifies models. Based on features corresponding to detected falls, we used the support vector machine (SVM) algorithm to distinguish between true falls and fall-like events. We apply this strategy to the publicly available fall detection databases from the university of Rzeszow's. Results indicated that our strategy accurately detected and classified fall events, suggesting its potential application to early alert mechanisms in the event of fall situations and its capability for classification of detected falls. Comparison of the classification results using the EWMA-based SVM classifier method with those achieved using three commonly used machine learning classifiers, neural network, K-nearest neighbor and naïve Bayes, proved our model superior.


Asunto(s)
Acelerometría/métodos , Accidentes por Caídas/estadística & datos numéricos , Monitoreo Ambulatorio/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Máquina de Vectores de Soporte , Algoritmos , Teorema de Bayes , Humanos , Aprendizaje Automático
17.
J Med Syst ; 38(9): 107, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25053208

RESUMEN

Efficient management of patient flow (demand) in emergency departments (EDs) has become an urgent issue for many hospital administrations. Today, more and more attention is being paid to hospital management systems to optimally manage patient flow and to improve management strategies, efficiency and safety in such establishments. To this end, EDs require significant human and material resources, but unfortunately these are limited. Within such a framework, the ability to accurately forecast demand in emergency departments has considerable implications for hospitals to improve resource allocation and strategic planning. The aim of this study was to develop models for forecasting daily attendances at the hospital emergency department in Lille, France. The study demonstrates how time-series analysis can be used to forecast, at least in the short term, demand for emergency services in a hospital emergency department. The forecasts were based on daily patient attendances at the paediatric emergency department in Lille regional hospital centre, France, from January 2012 to December 2012. An autoregressive integrated moving average (ARIMA) method was applied separately to each of the two GEMSA categories and total patient attendances. Time-series analysis was shown to provide a useful, readily available tool for forecasting emergency department demand.


Asunto(s)
Aglomeración , Servicio de Urgencia en Hospital/estadística & datos numéricos , Planificación en Salud/métodos , Necesidades y Demandas de Servicios de Salud , Servicio de Urgencia en Hospital/organización & administración , Francia , Humanos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...