Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 20(11): 4579-4590, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38778459

RESUMEN

The fully self-consistent GW (scGW) method with an iterative solution of the Dyson equation provides a consistent approach for describing the ground and excited states without any dependence on the mean-field reference. In this work, we present a relativistic version of scGW for molecules containing heavy elements using the exact two-component (X2C) Coulomb approximation. We benchmark SOC-81 data set containing closed shell heavy elements for the first ionization potential using the fully self-consistent GW as well as one-shot GW. The self-consistent GW provides superior results compared to G0W0 with PBE reference and comparable results to G0W0 with PBE0 while also removing the starting point dependence. The photoelectron spectra obtained at the X2C level demonstrate very good agreement with the experimental spectra. We also observe that scGW provides very good estimation of ionization potential for the inner d-shell orbitals. Additionally, using the well-conserved total energy, we investigate the equilibrium bond length and harmonic frequencies of a few halogen dimers using scGW. Overall, our findings demonstrate the applicability of the fully self-consistent GW method for accurate ionization potential, photoelectron spectra, and total energies in finite systems with heavy elements with a reasonable computational scaling.

2.
J Chem Theory Comput ; 20(8): 3109-3120, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38573104

RESUMEN

We test the performance of self-consistent GW and several representative implementations of vertex-corrected G0W0 (G0W0Γ). These approaches are tested on benchmark data sets covering full valence spectra (first ionization potentials and some inner valence shell excitations). For small molecules, when comparing against state-of-the-art wave function techniques, our results show that full self-consistency in the GW scheme either systematically outperforms vertex-corrected G0W0 or gives results of at least comparative quality. Moreover, G0W0Γ results in additional computational cost when compared to G0W0 or self-consistent GW. The dependency of G0W0Γ on the starting mean-field solution is frequently more dominant than the magnitude of the vertex correction itself. Consequently, for molecular systems, self-consistent GW performed on the imaginary axis (and then followed by modern analytical continuation techniques) offers a more reliable approach to make predictions of ionization potentials.

3.
J Phys Chem A ; 127(14): 3063-3071, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37017308

RESUMEN

Wave function methods have offered a robust, systematically improvable means to study ground-state properties in quantum many-body systems. Theories like coupled cluster and their derivatives provide highly accurate approximations to the energy landscape at a reasonable computational cost. Analogues of such methods to study thermal properties, though highly desirable, have been lacking because evaluating thermal properties involve a trace over the entire Hilbert space, which is a formidable task. Besides, excited-state theories are generally not as well studied as ground-state ones. In this mini-review, we present an overview of a finite-temperature wave function formalism based on thermofield dynamics to overcome these difficulties. Thermofield dynamics allows us to map the equilibrium thermal density matrix to a pure state, i.e., a single wave function, albeit in an expanded Hilbert space. Ensemble averages become expectation values over this so-called thermal state. Around this thermal state, we have developed a procedure to generalize ground-state wave function theories to finite temperatures. As explicit examples, we highlight formulations of mean-field, configuration interaction, and coupled cluster theories for thermal properties of Fermions in the grand-canonical ensemble. To assess the quality of these approximations, we also show benchmark studies for the one-dimensional Hubbard model, while comparing against exact results. We will see that the thermal methods perform similarly to their ground-state counterparts, while merely adding a prefactor to the asymptotic computational cost. They also inherit all the properties, good or bad, from the ground-state methods, signifying the robustness of our formalism and the scope for future development.

4.
J Chem Phys ; 153(12): 124115, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33003705

RESUMEN

We present a wave function representation for the canonical ensemble thermal density matrix by projecting the thermofield double state against the desired number of particles. The resulting canonical thermal state obeys an imaginary-time evolution equation. Starting with the mean-field approximation, where the canonical thermal state becomes an antisymmetrized geminal power (AGP) wave function, we explore two different schemes to add correlation: by number-projecting a correlated grand-canonical thermal state and by adding correlation to the number-projected mean-field state. As benchmark examples, we use number-projected configuration interaction and an AGP-based perturbation theory to study the hydrogen molecule in a minimal basis and the six-site Hubbard model.

5.
J Chem Theory Comput ; 15(11): 6127-6136, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31536704

RESUMEN

We present a coupled cluster and linear response theory to compute properties of many-electron systems at nonzero temperatures. For this purpose, we make use of the thermofield dynamics, which allows for a compact wave function representation of the thermal density matrix, and extend our recently developed framework ( J. Chem. Phys. 2019 , 150 , 154109 , DOI: 10.1063/1.5089560 ) to parametrize the so-called thermal state using an exponential ansatz with cluster operators that create thermal quasiparticle excitations on a mean-field reference. As benchmark examples, we apply this method to both model (one-dimensional Hubbard and Pairing) and ab initio (atomic Beryllium and molecular Hydrogen) systems, while comparing with exact results.

6.
J Chem Phys ; 150(15): 154109, 2019 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-31005114

RESUMEN

Thermofield dynamics has proven to be a very useful theory in high-energy physics, particularly since it permits the treatment of both time- and temperature-dependence on an equal footing. We here show that it also has an excellent potential for studying thermal properties of electronic systems in physics and chemistry. We describe a general framework for constructing finite temperature correlated wave function methods typical of ground state methods. We then introduce two distinct approaches to the resulting imaginary time Schrödinger equation, which we refer to as fixed-reference and covariant methods. As an example, we derive the two corresponding versions of thermal configuration interaction theory and apply them to the Hubbard model, while comparing with exact benchmark results.

7.
J Chem Phys ; 148(4): 044107, 2018 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-29390817

RESUMEN

There have been assertions in the literature that the variational and unitary forms of coupled cluster theory lead to the same energy functional. Numerical evidence from previous authors was inconsistent with this claim, yet the small energy differences found between the two methods and the relatively large number of variational parameters precluded an unequivocal conclusion. Using the Lipkin Hamiltonian, we here present conclusive numerical evidence that the two theories yield different energies. The ambiguities arising from the size of the cluster parameter space are absent in the Lipkin model, particularly when truncating to double excitations. We show that in the symmetry adapted basis under strong correlation, the differences between the variational and unitary models are large, whereas they yield quite similar energies in the weakly correlated regime previously explored. We also provide a qualitative argument rationalizing why these two models cannot be the same. Additionally, we study a generalized non-unitary and non-hermitian variant that contains excitation, de-excitation, and mixed operators with different amplitudes and show that it works best when compared to the traditional, variational, unitary, and extended forms of coupled cluster doubles theories.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...