Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Indian J Med Microbiol ; 45: 100384, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37573057

RESUMEN

PURPOSE: Compared to nasopharyngeal/oropharyngeal swabs (N/OPS-VTM), non-invasive saliva samples have enormous potential for scalability and routine population screening of SARS-CoV-2. In this study, we investigate the efficacy of saliva samples relative to N/OPS-VTM for use as a direct source for RT-PCR based SARS-CoV-2 detection. METHODS: We collected paired nasopharyngeal/oropharyngeal swabs and saliva samples from suspected positive SARS-CoV-2 patients and tested using RT-PCR. We used generalized linear models to investigate factors that explain result agreement. Further, we used simulations to evaluate the effectiveness of saliva-based screening in restricting the spread of infection in a large campus such as an educational institution. RESULTS: We observed a 75.4% agreement between saliva and N/OPS-VTM, that increased drastically to 83% in samples stored for less than three days. Such samples processed within two days of collection showed 74.5% test sensitivity. Our simulations suggest that a test with 75% sensitivity, but high daily capacity can be very effective in limiting the size of infection clusters in a workspace. Guided by these results, we successfully implemented a saliva-based screening in the Bangalore Life Sciences Cluster (BLiSC) campus. CONCLUSION: These results suggest that saliva may be a viable alternate source for SARS-CoV-2 surveillance if samples are processed immediately. Although saliva shows slightly lower sensitivity levels when compared to N/OPS-VTM, saliva collection is logistically advantageous. We strongly recommend the implementation of saliva-based screening strategies for large workplaces and in schools, as well as for population-level screening and routine surveillance as we learn to live with the SARS-CoV-2 virus.


Asunto(s)
COVID-19 , Saliva , Humanos , SARS-CoV-2 , Análisis Costo-Beneficio , COVID-19/diagnóstico , India , Nasofaringe , Manejo de Especímenes
2.
Neurochem Res ; 47(6): 1610-1636, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35229271

RESUMEN

Rabies is a fatal encephalitis caused by the Rabies lyssavirus (RABV). The presence of minimal neuropathological changes observed in rabies indicates that neuronal dysfunction, rather than neuronal death contributes to the fatal outcome. The role of mitochondrial changes has been suggested as a possible mechanism for neuronal dysfunction in rabies. However, these findings are mostly based on studies that have employed experimental models and laboratory-adapted virus. Studies on brain tissues from naturally infected human and animal hosts are lacking. The current study investigated the role of mitochondrial changes in rabies by morphological, biochemical and proteomic analysis of RABV-infected human and canine brains. Morphological analysis showed minimal inflammation with preserved neuronal and disrupted mitochondrial structure in both human and canine brains. Proteomic analysis revealed involvement of mitochondrial processes (oxidative phosphorylation, cristae formation, homeostasis and transport), synaptic proteins and autophagic pathways, with over-expression of subunits of mitochondrial respiratory complexes. Consistent with these findings, human and canine brains displayed elevated activities of complexes I (p < 0.05), IV (p < 0.05) and V (p < 0.05). However, this did not result in elevated ATP production (p < 0.0001), probably due to lowered mitochondrial membrane potential as noted in RABV-infected cells in culture. These could lead to mitochondrial dysfunction and mitophagy as indicated by expression of FKBP8 (p < 0.05) and PINK1 (p < 0.001)/PARKIN (p > 0.05) and ensuing autophagy, as shown by the status of LCIII (p < 0.05), LAMP1 (p < 0.001) and pertinent ultrastructural markers. We propose that altered mitochondrial bioenergetics and cristae architecture probably induce mitophagy, leading to autophagy and consequent neuronal dysfunction in rabies.


Asunto(s)
Virus de la Rabia , Rabia , Animales , Encéfalo/metabolismo , Perros , Humanos , Mitocondrias/metabolismo , Proteómica , Rabia/metabolismo , Rabia/patología , Virus de la Rabia/fisiología
4.
Sci Rep ; 11(1): 1483, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452321

RESUMEN

Mitochondrial dysfunction and neurodegeneration underlie movement disorders such as Parkinson's disease, Huntington's disease and Manganism among others. As a corollary, inhibition of mitochondrial complex I (CI) and complex II (CII) by toxins 1-methyl-4-phenylpyridinium (MPP+) and 3-nitropropionic acid (3-NPA) respectively, induced degenerative changes noted in such neurodegenerative diseases. We aimed to unravel the down-stream pathways associated with CII inhibition and compared with CI inhibition and the Manganese (Mn) neurotoxicity. Genome-wide transcriptomics of N27 neuronal cells exposed to 3-NPA, compared with MPP+ and Mn revealed varied transcriptomic profile. Along with mitochondrial and synaptic pathways, Autophagy was the predominant pathway differentially regulated in the 3-NPA model with implications for neuronal survival. This pathway was unique to 3-NPA, as substantiated by in silico modelling of the three toxins. Morphological and biochemical validation of autophagy markers in the cell model of 3-NPA revealed incomplete autophagy mediated by mechanistic Target of Rapamycin Complex 2 (mTORC2) pathway. Interestingly, Brain Derived Neurotrophic Factor (BDNF), which was elevated in the 3-NPA model could confer neuroprotection against 3-NPA. We propose that, different downstream events are activated upon neurotoxin-dependent CII inhibition compared to other neurotoxins, with implications for movement disorders and regulation of autophagy could potentially offer neuroprotection.


Asunto(s)
Autofagia/fisiología , Complejo II de Transporte de Electrones/metabolismo , Neuronas/metabolismo , 1-Metil-4-fenilpiridinio/farmacología , Animales , Muerte Celular , Línea Celular , Supervivencia Celular , Células Cultivadas , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/antagonistas & inhibidores , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Mitocondrias/metabolismo , Trastornos del Movimiento/fisiopatología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Neuroprotección , Neurotoxinas/toxicidad , Nitrocompuestos/farmacología , Propionatos/farmacología , Ratas , Transcriptoma/genética
5.
J Med Virol ; 92(8): 1007-1012, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31900943

RESUMEN

Chikungunya, a mosquito-borne disease caused by Chikungunya virus (CHIKV), continues to be a significant public health problem in India. In 2016, 56 000 cases were reported from India, the largest number since the reemergence of CHIKV in this region in 2006. In the present study, using molecular and phylogenetic methods, the circulating strains from southern India during 2015-2016 were characterized in the context of circulating Asian strains. Partial envelope gene (E1) sequencing was performed on 20 serum samples positive for CHIKV by a reverse transcription-polymerase chain reaction. Phylogenetic analysis showed that all the sequences in this study belonged to the East Central South African (ECSA) genotype and clustered together with other strains from India. Bayesian phylogenetic analysis revealed that the sequences from the study grouped into two different subclades. The estimate of divergence times suggests that subclades of the ECSA genotype, share a common ancestor approximately 4 to 12 years ago. Six nonsynonymous mutations-K211E, M269V, D284E, V322A, I317V and V220I were noted in E1. In conclusion, this study revealed the cocirculation of distinct subclades within the ECSA genotype of CHIKV in South India during 2015-2016. The I317V mutation in E1 has only been described in recent CHIKV strains from north-central India and Bangladesh. This study highlights the need for continued molecular surveillance to identify the emergence of novel strains and unique mutations in CHIKV with epidemic potential.


Asunto(s)
Fiebre Chikungunya/virología , Virus Chikungunya/genética , Proteínas del Envoltorio Viral/genética , Sustitución de Aminoácidos , Fiebre Chikungunya/epidemiología , Evolución Molecular , Genes Virales , Genotipo , Humanos , India/epidemiología , Mutación , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...