Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Exp Mol Med ; 56(4): 935-945, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38556547

RESUMEN

The identification of targetomes remains a challenge given the pleiotropic effect of miRNAs, the limited effects of miRNAs on individual targets, and the sheer number of estimated miRNA-target gene interactions (MTIs), which is around 44,571,700. Currently, targetome identification for single miRNAs relies on computational evidence and functional studies covering smaller numbers of targets. To ensure that the targetome analysis could be experimentally verified by functional assays, we employed a systematic approach and explored the targetomes of four miRNAs (miR-129-5p, miR-129-1-3p, miR-133b, and miR-873-5p) by analyzing 410 predicted target genes, both of which were previously associated with Parkinson's disease (PD). After performing 13,536 transfections, we validated 442 of the 705 putative MTIs (62,7%) through dual luciferase reporter assays. These analyses increased the number of validated MTIs by at least 2.1-fold for miR-133b and by a maximum of 24.3-fold for miR-873-5p. Our study contributes to the experimental capture of miRNA targetomes by addressing i) the ratio of experimentally verified MTIs to predicted MTIs, ii) the sizes of disease-related miRNA targetomes, and iii) the density of MTI networks. A web service to support the analyses on the MTI level is available online ( https://ccb-web.cs.uni-saarland.de/utr-seremato ), and all the data have been added to the miRATBase database ( https://ccb-web.cs.uni-saarland.de/miratbase ).


Asunto(s)
Regiones no Traducidas 3' , MicroARNs , Enfermedad de Parkinson , MicroARNs/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Humanos , Regulación de la Expresión Génica , Biología Computacional/métodos , Redes Reguladoras de Genes , Biblioteca de Genes
2.
Nat Biotechnol ; 42(1): 109-118, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37106037

RESUMEN

Molecular mechanisms of organismal and cell aging remain incompletely understood. We, therefore, generated a body-wide map of noncoding RNA (ncRNA) expression in aging (16 organs at ten timepoints from 1 to 27 months) and rejuvenated mice. We found molecular aging trajectories are largely tissue-specific except for eight broadly deregulated microRNAs (miRNAs). Their individual abundance mirrors their presence in circulating plasma and extracellular vesicles (EVs) whereas tissue-specific ncRNAs were less present. For miR-29c-3p, we observe the largest correlation with aging in solid organs, plasma and EVs. In mice rejuvenated by heterochronic parabiosis, miR-29c-3p was the most prominent miRNA restored to similar levels found in young liver. miR-29c-3p targets the extracellular matrix and secretion pathways, known to be implicated in aging. We provide a map of organism-wide expression of ncRNAs with aging and rejuvenation and identify a set of broadly deregulated miRNAs, which may function as systemic regulators of aging via plasma and EVs.


Asunto(s)
MicroARNs , Ratones , Animales , MicroARNs/metabolismo , Envejecimiento/genética , Hígado/metabolismo , Parabiosis
3.
Mol Oncol ; 2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37899663

RESUMEN

During cervical carcinogenesis, T-helper (Th)-17 cells accumulate in the peripheral blood and tumor tissues of cancer patients. We previously demonstrated that Th17 cells are associated with therapy resistance as well as cervical cancer metastases and relapse; however, the underlying Th17-driven mechanisms are not fully understood. Here, using microarrays, we found that Th17 cells induced an epithelial-to-mesenchymal transition (EMT) phenotype of cervical cancer cells and promoted migration and invasion of 2D cultures and 3D spheroids via induction of microRNA miR-142-5p. As the responsible mechanism, we identified the subunits C and D of the succinate dehydrogenase (SDH) complex as new targets of miR-142-5p and provided evidence that Th17-miR-142-5p-dependent reduced expression of SDHC and SDHD mediated enhanced migration and invasion of cancer cells using small interfering RNAs (siRNAs) for SDHC and SDHD, and miR-142-5p inhibitors. Consistently, patients exhibited high levels of succinate in their serum associated with lymph node metastases and diminished expression of SDHD in patient biopsies correlated with increased numbers of Th17 cells. Correspondingly, a combination of weak or negative SDHD expression and a ratio of Th17/CD4+ T cells > 43.90% in situ was associated with reduced recurrence-free survival. In summary, we unraveled a previously unknown molecular mechanism by which Th17 cells promote cervical cancer progression and suggest evaluation of Th17 cells as a potential target for immunotherapy in cervical cancer.

4.
Mol Med ; 29(1): 43, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013480

RESUMEN

BACKGROUND: Although a pivotal role of microRNA (miRNA, miR) in the pathogenesis of Huntington's disease (HD) is increasingly recognized, the molecular functions of miRNAs in the pathomechanisms of HD await further elucidation. One of the miRNAs that have been associated with HD is miR-34a-5p, which was deregulated in the mouse R6/2 model and in human HD brain tissues. METHODS: The aim of our study was to demonstrate interactions between miR-34a-5p and HD associated genes. By computational means we predicted 12 801 potential target genes of miR-34a-5p. An in-silico pathway analysis revealed 22 potential miR-34a-5p target genes in the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway "Huntington's disease". RESULTS: Using our high-throughput miRNA interaction reporter assay (HiTmIR) we identified NDUFA9, TAF4B, NRF1, POLR2J2, DNALI1, HIP1, TGM2 and POLR2G as direct miR-34a-5p target genes. Direct binding of miR-34a-5p to target sites in the 3'UTRs of TAF4B, NDUFA9, HIP1 and NRF1 was verified by a mutagenesis HiTmIR assay and by determining endogenous protein levels for HIP1 and NDUFA9. STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) analysis identified protein-protein interaction networks associated with HD like "Glutamine Receptor Signaling Pathway" and "Calcium Ion Transmembrane Import Into Cytosol". CONCLUSION: Our study demonstrates multiple interactions between miR-34a-5p and HD associated target genes and thereby lays the ground for future therapeutic interventions using this miRNA.


Asunto(s)
Enfermedad de Huntington , MicroARNs , Ratones , Animales , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Modelos Animales de Enfermedad , Mapas de Interacción de Proteínas , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Perfilación de la Expresión Génica
5.
Cell Mol Biol Lett ; 28(1): 8, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36694129

RESUMEN

Among the concepts in biology that are widely taken granted is a potentiated cooperative effect of multiple miRNAs on the same target. This strong hypothesis contrasts insufficient experimental evidence. The quantity as well as the quality of required side constraints of cooperative binding remain largely hidden. For miR-21-5p and miR-155-5p, two commonly investigated regulators across diseases, we selected 15 joint target genes. These were chosen to represent various neighboring 3'UTR binding site constellations, partially exceeding the distance rules that have been established for over a decade. We identified different cooperative scenarios with the binding of one miRNA enhancing the binding effects of the other miRNA and vice versa. Using both, reporter assays and whole proteome analyses, we observed these cooperative miRNA effects for genes that bear 3'UTR binding sites at distances greater than the previously defined limits. Astonishingly, the experiments provide even stronger evidence for cooperative miRNA effects than originally postulated. In the light of these findings the definition of targetomes specified for single miRNAs need to be refined by a concept that acknowledges the cooperative effects of miRNAs.


Asunto(s)
MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Regiones no Traducidas 3' , Sitios de Unión
6.
Cell Death Discov ; 9(1): 18, 2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36681665

RESUMEN

Parkinson's disease (PD) emerges as a complex, multifactorial disease. While there is increasing evidence that dysregulated T cells play a central role in PD pathogenesis, elucidation of the pathomechanical changes in related signaling is still in its beginnings. We employed time-resolved RNA expression upon the activation of peripheral CD4+ T cells to track and functionally relate changes on cellular signaling in representative cases of patients at different stages of PD. While only few miRNAs showed time-course related expression changes in PD, we identified groups of genes with significantly altered expression for each different time window. Towards a further understanding of the functional consequences, we highlighted pathways with decreased or increased activity in PD, including the most prominent altered IL-17 pathway. Flow cytometric analyses showed not only an increased prevalence of Th17 cells but also a specific subtype of IL-17 producing γδ-T cells, indicating a previously unknown role in PD pathogenesis.

7.
Cancers (Basel) ; 14(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36291816

RESUMEN

BACKGROUND: As microRNA-142 (miR-142) is the only human microRNA gene where mutations have consistently been found in about 20% of all cases of diffuse large B-cell lymphoma (DLBCL), we wanted to determine the impact of miR-142 inactivation on protein expression of DLBCL cell lines. METHODS: miR-142 was deleted by CRISPR/Cas9 knockout in cell lines from DLBCL. RESULTS: By proteome analyses, miR-142 knockout resulted in a consistent up-regulation of 52 but also down-regulation of 41 proteins in GC-DLBCL lines BJAB and SUDHL4. Various mitochondrial ribosomal proteins were up-regulated in line with their pro-tumorigenic properties, while proteins necessary for MHC-I presentation were down-regulated in accordance with the finding that miR-142 knockout mice have a defective immune response. CFL2, CLIC4, STAU1, and TWF1 are known targets of miR-142, and we could additionally confirm AKT1S1, CCNB1, LIMA1, and TFRC as new targets of miR-142-3p or -5p. CONCLUSIONS: Seed-sequence mutants of miR-142 confirmed potential targets and novel targets of miRNAs can be identified in miRNA knockout cell lines. Due to the complex contribution of miRNAs within cellular regulatory networks, in particular when miRNAs highly present in RISC complexes are replaced by other miRNAs, primary effects on gene expression may be covered by secondary layers of regulation.

8.
Front Immunol ; 13: 831680, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265081

RESUMEN

TNF-related apoptosis inducing ligand (TRAIL) is expressed on cytotoxic T lymphocytes (CTLs) and TRAIL is linked to progression of diabetes. However, the impact of high glucose on TRAIL expression and its related killing function in CTLs still remains largely elusive. Here, we report that TRAIL is substantially up-regulated in CTLs in environments with high glucose (HG) both in vitro and in vivo. Non-mitochondrial reactive oxygen species, NFκB and PI3K/Akt are essential in HG-induced TRAIL upregulation in CTLs. TRAILhigh CTLs induce apoptosis of pancreatic beta cell line 1.4E7. Treatment with metformin and vitamin D reduces HG-enhanced expression of TRAIL in CTLs and coherently protects 1.4E7 cells from TRAIL-mediated apoptosis. Our work suggests that HG-induced TRAILhigh CTLs might contribute to the destruction of pancreatic beta cells in a hyperglycemia condition.


Asunto(s)
Linfocitos T Citotóxicos , Ligando Inductor de Apoptosis Relacionado con TNF , Glucosa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Linfocitos T Citotóxicos/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
9.
Cureus ; 13(11): e20014, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34873551

RESUMEN

The overall failure rate of standard therapeutic options for late/chronic/persistent borreliosis emphasizes the need for novel therapeutic strategies. In this report, we are presenting a novel therapeutic option based on a new technology, Induced Native Phage Therapy (INPT; PhagenCorp, LLC, Sarasota, FL), and its ability to facilitate the elimination of infection more rapidly, efficiently, and with less harm to the patient than conventional treatments. Borrelia species in the environment are themselves always infected by their own type of Borrelia bacteriophages. Both the Borrelia spirochete and the Borrelia bacteriophages are transmitted into humans via the bite of a vector, such as ticks. The Borrelia bacteriophages (phages) are called native phages in that they coexist naturally within the human body, and only infect the specific bacteria host population. Native phages persist in humans only as long as there are host bacteria of the correct type to continue replicating more phages. The purposeful manipulation of native phages to kill their host bacteria is the basis of INPT. INPT is a patent-pending technology that uses a proprietary adjunctive assay called Biospectral Emission Sequencing to identify and isolate the specific complex electromagnetic signatures necessary to induce the native phages to epigenetically revert from their normal quiescent, lysogenic activity to virulent, lytic activity, thereby killing their host bacteria. The strategic subtle, low-frequency/low-energy signatures are imprinted into a proprietary oral formula, Inducen-LD, which serves as a carrier to introduce the signals therapeutically into the body. As a proof-of-concept method validation, a total of 26 patients with post-treatment (antibiotic) Lyme disease syndrome, who initially were found upon Phelix Borrelia-phage testing (R.E.D. Laboratories, Belgium) to have one or more Borrelia species, were submitted to INPT treatment. A total of 20 patients (77%) were found to be negative after two weeks of the total program of care. Six patients who remained positive after the initial therapy received an extended INPT treatment and were retested. Four were subsequently found to be negative for one or more of their previously diagnosed Borrelia strains. Thus a total of 24 out of 26 (92%) patients were successfully treated with INPT. Mild to substantial clinical improvements were reported by all participants without noticeable adverse reactions to the INPT treatments. We have demonstrated a possible mechanism in which native bacteriophages can be induced to epigenetically switch from lysogenic to lytic actions, thereby eliminating the targeted bacteria efficiently, with little to no harm to tissues or the microbiome.

10.
Chem Res Toxicol ; 34(12): 2485-2499, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34797640

RESUMEN

Drug-induced liver injury is a leading cause of compound attrition during both preclinical and clinical drug development, and early strategies are in place to tackle this recurring problem. Human-relevant in vitro models that are more predictive of hepatotoxicity hazard identification, and that could be employed earlier in the drug discovery process, would improve the quality of drug candidate selection and help reduce attrition. We present an evaluation of four human hepatocyte in vitro models of increasing culture complexity (i.e., two-dimensional (2D) HepG2 monolayers, hepatocyte sandwich cultures, three-dimensional (3D) hepatocyte spheroids, and precision-cut liver slices), using the same tool compounds, viability end points, and culture time points. Having established the improved prediction potential of the 3D hepatocyte spheroid model, we describe implementing this model into an industrial screening setting, where the challenge was matching the complexity of the culture system with the scale and throughput required. Following further qualification and miniaturization into a 384-well, high-throughput screening format, data was generated on 199 compounds. This clearly demonstrated the ability to capture a greater number of severe hepatotoxins versus the current routine 2D HepG2 monolayer assay while continuing to flag no false-positive compounds. The industrialization and miniaturization of the 3D hepatocyte spheroid complex in vitro model demonstrates a significant step toward reducing drug attrition and improving the quality and safety of drugs, while retaining the flexibility for future improvements, and has replaced the routine use of the 2D HepG2 monolayer assay at GlaxoSmithKline.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Hepatocitos/efectos de los fármacos , Modelos Biológicos , Preparaciones Farmacéuticas/química , Esferoides Celulares/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Células Hep G2 , Hepatocitos/patología , Humanos , Masculino , Ratas , Ratas Wistar , Esferoides Celulares/patología
11.
Mol Oncol ; 15(12): 3559-3577, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34469022

RESUMEN

Cervical cancer therapy is still a major clinical challenge, as patients substantially differ in their response to standard treatments, including chemoradiotherapy (CRT). During cervical carcinogenesis, T-helper (Th)-17 cells accumulate in the peripheral blood and tumor tissues of cancer patients and are associated with poor prognosis. In this prospective study, we find increased Th17 frequencies in the blood of patients after chemoradiotherapy and a post-therapeutic ratio of Th17/CD4+ T cells > 8% was associated with early recurrence. Furthermore, Th17 cells promote resistance of cervical cancer cells toward CRT, which was dependent on the AKT signaling pathway. Consistently, patients with high Th17 frequencies in pretherapeutic biopsies exhibit lower response to primary CRT. This work reveals a key role of Th17 cells in CRT resistance and elevated Th17 frequencies in the blood after CRT correspond with early recurrence. Our results may help to explain individual treatment responses of cervical cancer patients and suggest evaluation of Th17 cells as a novel predictive biomarker for chemoradiotherapy responses and as a potential target for immunotherapy in cervical cancer.


Asunto(s)
Neoplasias del Cuello Uterino , Quimioradioterapia , Femenino , Humanos , Estudios Prospectivos , Recurrencia , Células Th17 , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología
12.
J Chem Phys ; 154(11): 114502, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33752367

RESUMEN

Ice III is a hydrogen-disordered phase of ice that is stable between about 0.2 and 0.35 GPa. Upon cooling, it transforms to its hydrogen-ordered counterpart ice IX within the stability region of ice II. Here, the effect of ammonium fluoride doping on this phase transition is investigated, which is followed for the first time with in situ neutron diffraction. The a and c lattice constants are found to expand and contract, respectively, upon hydrogen ordering, yielding an overall negative volume change. Interestingly, the anisotropy in the lattice constants persists when ice IX is fully formed, and negative thermal expansion is observed. Analogous to the isostructural keatite and ß-spodumenes, the negative thermal expansion can be explained through the buildup of torsional strain within the a-b plane as the helical "springs" within the structure expand upon heating. The reversibility of the phase transition was demonstrated upon heating. As seen in diffraction and Raman spectroscopy, the ammonium fluoride doping induces additional residual hydrogen disorder in ice IX and is suggested to be a chemical way for the "excitation" of the configurational ice-rules manifold. Compared to ice VIII, the dopant-induced hydrogen disorder in ice IX is smaller, which suggests a higher density of accessible configurational states close to the ground state in ice IX. This study highlights the importance of dopants for exploring the water's phase diagram and underpins the highly complex solid-state chemistry of ice.

13.
Nucleic Acids Res ; 49(1): 127-144, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33305319

RESUMEN

MicroRNAs are regulators of gene expression. A wide-spread, yet not validated, assumption is that the targetome of miRNAs is non-randomly distributed across the transcriptome and that targets share functional pathways. We developed a computational and experimental strategy termed high-throughput miRNA interaction reporter assay (HiTmIR) to facilitate the validation of target pathways. First, targets and target pathways are predicted and prioritized by computational means to increase the specificity and positive predictive value. Second, the novel webtool miRTaH facilitates guided designs of reporter assay constructs at scale. Third, automated and standardized reporter assays are performed. We evaluated HiTmIR using miR-34a-5p, for which TNF- and TGFB-signaling, and Parkinson's Disease (PD)-related categories were identified and repeated the pipeline for miR-7-5p. HiTmIR validated 58.9% of the target genes for miR-34a-5p and 46.7% for miR-7-5p. We confirmed the targeting by measuring the endogenous protein levels of targets in a neuronal cell model. The standardized positive and negative targets are collected in the new miRATBase database, representing a resource for training, or benchmarking new target predictors. Applied to 88 target predictors with different confidence scores, TargetScan 7.2 and miRanda outperformed other tools. Our experiments demonstrate the efficiency of HiTmIR and provide evidence for an orchestrated miRNA-gene targeting.


Asunto(s)
Regulación de la Expresión Génica/genética , Ensayos Analíticos de Alto Rendimiento , MicroARNs/genética , 1-Metil-4-fenilpiridinio , Regiones no Traducidas 3' , Línea Celular , Línea Celular Tumoral , Genes Reporteros , Humanos , Mesencéfalo/citología , Neuroblastoma/patología , Neuronas/metabolismo , Enfermedad de Parkinson/genética , Valor Predictivo de las Pruebas , Sensibilidad y Especificidad , Transducción de Señal , Transcriptoma , Factor de Crecimiento Transformador beta/fisiología , Factor de Necrosis Tumoral alfa/fisiología
14.
J Immunother Cancer ; 8(2)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33229509

RESUMEN

BACKGROUND: In 2016 the first-in-human phase I study of a miRNA-based cancer therapy with a liposomal mimic of microRNA-34a-5p (miR-34a-5p) was closed due to five immune related serious adverse events (SAEs) resulting in four patient deaths. For future applications of miRNA mimics in cancer therapy it is mandatory to unravel the miRNA effects both on the tumor tissue and on immune cells. Here, we set out to analyze the impact of miR-34a-5p over-expression on the CXCL10/CXCL11/CXCR3 axis, which is central for the development of an effective cancer control. METHODS: We performed a whole genome expression analysis of miR-34a-5p transfected M1 macrophages followed by an over-representation and a protein-protein network analysis. In-silico miRNA target prediction and dual luciferase assays were used for target identification and verification. Target genes involved in chemokine signaling were functionally analyzed in M1 macrophages, CD4+ and CD8+ T cells. RESULTS: A whole genome expression analysis of M1 macrophages with induced miR-34a-5p over-expression revealed an interaction network of downregulated target mRNAs including CXCL10 and CXCL11. In-silico target prediction in combination with dual luciferase assays identified direct binding of miR-34a-5p to the 3'UTRs of CXCL10 and CXCL11. Decreased CXCL10 and CXCL11 secretion was shown on the endogenous protein level and in the supernatant of miR-34a-5p transfected and activated M1 macrophages. To complete the analysis of the CXCL10/CXCL11/CXCR3 axis, we activated miR-34a-5p transfected CD4+ and CD8+ T cells by PMA/Ionomycin and found reduced levels of endogenous CXCR3 and CXCR3 on the cell surface. CONCLUSIONS: MiR-34a-5p mimic administered by intravenous administration will likely not only be up-taken by the tumor cells but also by the immune cells. Our results indicate that miR-34a-5p over-expression leads in M1 macrophages to a reduced secretion of CXCL10 and CXCL11 chemokines and in CD4+ and CD8+ T cells to a reduced expression of CXCR3. As a result, less immune cells will be attracted to the tumor site. Furthermore, high levels of miR-34a-5p in naive CD4+ T cells can in turn hinder Th1 cell polarization through the downregulation of CXCR3 leading to a less pronounced activation of cytotoxic T lymphocytes, natural killer, and natural killer T cells and possibly contributing to lymphocytopenia.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Quimiocina CXCL10/inmunología , Quimiocina CXCL11/inmunología , Macrófagos/inmunología , MicroARNs/metabolismo , Receptores CXCR3/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Células HEK293 , Humanos , ARN Mensajero/genética , ARN Mensajero/inmunología , ARN Mensajero/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Transducción de Señal
15.
Nucleic Acids Res ; 48(18): 10164-10183, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32990751

RESUMEN

T cells are central to the immune response against various pathogens and cancer cells. Complex networks of transcriptional and post-transcriptional regulators, including microRNAs (miRNAs), coordinate the T cell activation process. Available miRNA datasets, however, do not sufficiently dissolve the dynamic changes of miRNA controlled networks upon T cell activation. Here, we established a quantitative and time-resolved expression pattern for the entire miRNome over a period of 24 h upon human T-cell activation. Based on our time-resolved datasets, we identified central miRNAs and specified common miRNA expression profiles. We found the most prominent quantitative expression changes for miR-155-5p with a range from initially 40 molecules/cell to 1600 molecules/cell upon T-cell activation. We established a comprehensive dynamic regulatory network of both the up- and downstream regulation of miR-155. Upstream, we highlight IRF4 and its complexes with SPI1 and BATF as central for the transcriptional regulation of miR-155. Downstream of miR-155-5p, we verified 17 of its target genes by the time-resolved data recorded after T cell activation. Our data provide comprehensive insights into the range of stimulus induced miRNA abundance changes and lay the ground to identify efficient points of intervention for modifying the T cell response.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Activación de Linfocitos , MicroARNs/metabolismo , Subgrupos de Linfocitos T/metabolismo , Adulto , Linfocitos T CD4-Positivos/citología , Femenino , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Subgrupos de Linfocitos T/citología , Adulto Joven
16.
Cells ; 9(6)2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531952

RESUMEN

Neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by the accumulation of misfolded proteins in the endoplasmic reticulum (ER) and the unfolded protein response (UPR). Modulating the UPR is one of the major challenges to counteract the development of neurodegenerative disorders and other diseases with affected UPR. Here, we show that miR-34a-5p directly targets the IRE1α branch of the UPR, including the genes BIP, IRE1α, and XBP1. Upon induction of ER stress in neuronal cells, miR-34a-5p overexpression impacts the resulting UPR via a significant reduction in IRE1α and XBP1s that in turn leads to decreased viability, increased cytotoxicity and caspase activity. The possibility to modify the UPR signaling pathway by a single miRNA that targets central genes of the IRE1α branch offers new perspectives for future therapeutic approaches against neurodegeneration.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Endorribonucleasas/metabolismo , MicroARNs/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Humanos , Transfección , Respuesta de Proteína Desplegada
17.
Nucleic Acids Res ; 48(W1): W515-W520, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32379325

RESUMEN

We present GeneTrail 3, a major extension of our web service GeneTrail that offers rich functionality for the identification, analysis, and visualization of deregulated biological processes. Our web service provides a comprehensive collection of biological processes and signaling pathways for 12 model organisms that can be analyzed with a powerful framework for enrichment and network analysis of transcriptomic, miRNomic, proteomic, and genomic data sets. Moreover, GeneTrail offers novel workflows for the analysis of epigenetic marks, time series experiments, and single cell data. We demonstrate the capabilities of our web service in two case-studies, which highlight that GeneTrail is well equipped for uncovering complex molecular mechanisms. GeneTrail is freely accessible at: http://genetrail.bioinf.uni-sb.de.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Programas Informáticos , Envejecimiento/genética , Animales , Linfocitos T CD4-Positivos/inmunología , Epigenómica/métodos , Genómica/métodos , Humanos , Activación de Linfocitos , Ratones , Microglía/metabolismo , Proteómica/métodos , Transducción de Señal , Análisis de la Célula Individual/métodos
18.
PLoS One ; 15(5): e0231979, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32396535

RESUMEN

OBJECTIVES: We evaluated a simulation-based training curriculum with quantitatively defined performance benchmarks for utility workers location and excavation of utility services. BACKGROUND: Damaging buried utilities is associated with considerable safety risks to workers and substantial cost to employers. METHODS: In a prospective, randomized and blinded study we assessed the impact of Proficiency Based Progression (PBP) simulation training on the location and excavation of utility services work. RESULTS: PBP simulation training reduced performance errors (33%, p = 0.006) in comparison a standard trained group. When implemented across all workers in the same division there was a 35-61% reduction in utility strikes (p = 0.028) and an estimated cost saving of £116,000 -£2,175,000 in the 12 months (47,000 work hours) studied. CONCLUSIONS: The magnitude of the training benefit of PBP simulation training in the utilities sector appears to be the same as it is in surgery, cardiology and procedure-based medicine. APPLICATION: Quality-assured utility worker simulation training significantly reduces utility damage and associated costs.


Asunto(s)
Entrenamiento Simulado/métodos , Adulto , Costos y Análisis de Costo , Educación a Distancia , Humanos , Distribución de Poisson , Estudios Prospectivos , Entrenamiento Simulado/economía , Método Simple Ciego
19.
Brief Bioinform ; 21(6): 1999-2010, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31792536

RESUMEN

MOTIVATION: Since the initial discovery of microRNAs as post-transcriptional, regulatory key players in the 1990s, a total number of $2656$ mature microRNAs have been publicly described for Homo sapiens. As discovery of new miRNAs is still on-going, target identification remains to be an essential and challenging step preceding functional annotation analysis. One key challenge for researchers seems to be the selection of the most appropriate tool out of the larger multiverse of published solutions for a given research study set-up. RESULTS: In this review we collectively describe the field of in silico target prediction in the course of time and point out long withstanding principles as well as recent developments. By compiling a catalog of characteristics about the 98 prediction methods and identifying common and exclusive traits, we signpost a simplified mechanism to address the problem of application selection. Going further we devised interpretation strategies for common types of output as generated by frequently used computational methods. To this end, our work specifically aims to make prospective users aware of common mistakes and practical questions that arise during the application of target prediction tools. AVAILABILITY: An interactive implementation of our recommendations including materials shown in the manuscript is freely available at https://www.ccb.uni-saarland.de/mtguide.


Asunto(s)
Biología Computacional , Simulación por Computador , Regulación de la Expresión Génica , MicroARNs , Biología Computacional/métodos , Estudios Prospectivos , Programas Informáticos
20.
Inorg Chem ; 58(22): 15216-15224, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31693345

RESUMEN

The discovery of phosphorene, a single layer of black phosphorus, has accelerated the investigation of pnictogen nanomaterials, leading to the recent identification of arsenene and antimonene. These two-dimensional nanomaterials display physical properties superior to those of graphene for some applications. Recently, single-wall carbon nanotubes (SWCNTs) have been filled with P4 molecules from the melt and As4 molecules from the vapor phase. Confined within SWCNTs, polymerization reactions yielded new one-dimensional pnictogen allotropes. Here, we show using high-resolution electron microscopy that such nanostructures can also be observed upon filling SWCNTs from the vapor phase using red phosphorus as the source material. Using larger-diameter SWCNTs, the vapor phase favors the formation of double-stranded phosphorus zigzag ladders observed here for the first time. Overall, however, SWCNTs were generally found to fill more efficiently with liquid phosphorus; substantial decreases in the filling yields were observed for both phosphorus and arsenic filling of narrow SWCNTs using the vapor route. Attempts to extend the pnitogen series using molten antimony gave very low filling yields. However, the antimony zigzag ladder was observed on two occasions, suggesting that this structural motif dominates across the pnictogens. Computational predictions of the encapsulation energies of the various pnictogen nanostructures are consistent with the observed experimental trends, and band gap calculations predict that the single-stranded zigzag chains of all investigated pnictogens are fully metallic. Using SWCNTs with diameters of >1.5 nm revealed a plethora of complex new phosphorus nanostructures, which highlights an exciting new avenue for future work in this area.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...